[1] Barker H E, Paget J T, Khan A A, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425. DOI:10.1038/nrc3958. [2] Rühm W, Eidemüller M, Kaiser J C. Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data[J]. Int J Radiat Biol, 2017, 93(10):1093-1117. DOI:10.1080/09553002.2017.1310405. [3] Shukla S K, Sharma A K, Bajaj S, et al. Radiation proteome: a clue to protection, carcinogenesis, and drug development[J]. Drug Discov Today, 2021, 26(2): 525-531. DOI:10.1016/j.drudis.2020.10.024. [4] Nakamura N. A hypothesis: radiation carcinogenesis may result from tissue injuries and subsequent recovery processes which can act as tumor promoters and lead to an earlier onset of cancer[J]. Br J Radiol, 2020, 93(1115): 20190843. DOI:10.1259/bjr.20190843. [5] ZHAO H, CHENG Y, DONG S, et al. Down regulation of miR-143 promotes radiation-induced thymic lymphoma by targeting B7H1[J]. Toxicol Lett, 2017, 280:116-124. DOI:10.1016/j.toxlet.2017.07.891. [6] LIU C, GAO F, LI B, et al. TLR4 knockout protects mice from radiation-induced thymic lymphoma by downregulation of IL6 and miR-21[J]. Leukemia, 2011, 25(9): 1516-1519. DOI:10.1038/leu.2011.113. [7] LIU C, LI B, CHENGY, et al. MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3[J]. Int J Biol Sci, 2011, 7(3): 347-63. DOI:10.7150/ijbs.7.347. [8] CHEN H, YAO X, DI X, et al. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma[J]. Cancer Lett, 2020. DOI:10.1016/j.canlet.2020.01.037. [9] Bryant J, White L, Coen N, et al. MicroRNA analysis of ATM-deficient cells indicate PTEN and CCDN1 as potential biomarkers of radiation response[J]. Radiat Res, 2020. DOI:10.1667/rr15462.1. [10] LIANG G, MENG W, HUANG X, et al. miR-196b-5p-mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer[J]. Proc Natl Acad Sci U S A, 2020, 117(8): 4347-4357. DOI:10.1073/pnas.1917531117. [11] Farooqi A A, Qureshi M Z, Attar R, et al. MicroRNA-143 as a new weapon against cancer: overview of the mechanistic insights and long non-coding RNA mediated regulation of miRNA-143 in different cancers[J]. Cell Mol Biol (Noisy-le-grand), 2019, 65(6): 1-5. [12] WANG H, DENG Q, LV Z, et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1[J]. Mol Cancer, 2019. 18(1):181. DOI:10.1186/s12943-019-1108-x. [13] Soheilyfar S, Velashjerdi Z, Sayed Hajizadeh Y, et al. In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer[J]. J Buon, 2018. 23(5): 1290-1296. [14] Brenner A V, Sugiyama H, Preston D L, et al. Radiation risk of central nervous system tumors in the life span study of atomic bomb survivors, 1958-2009[J]. Eur J Epidemiol, 2020, 35(6): 591-600. DOI:10.1007/s10654-019-00599-y. [15] Nakachi K, Hayashi T, Hamatani K, et al. Sixty years of follow-up of Hiroshima and Nagasaki survivors: current progress in molecular epidemiology studies[J]. Mutat Res, 2008, 659(1-2): 109-117. DOI:10.1016/j.mrrev.2008.02.001. [16] Boulton F. Ionising radiation and childhood leukaemia revisited[J]. Med Confl Surviv, 2019, 35(2): 144-170. DOI:10.1080/13623699.2019.1571684. [17] Maqsudur R A, Rubia,Bennett J, et al. Low dose radiation, inflammation, cancer and chemoprevention[J]. International Journal of Radiation Biology, 2018, 95(4): 506-515. DOI:10.1080/09553002.2018.1484194. [18] Hong J Y, Han K, Jung J H, et al. Association of exposure to diagnostic low-dose ionizing radiation with risk of cancer among youths in South Korea[J]. Int J Radiat Biol, 2019, 2(9): e1910584. DOI:10.1080/09553002.2018.148419410.1001/jamanetworkopen.2019.10584. [19] Mortezaee K, Najafi M, Farhood B, et al. Genomic instability and carcinogenesis of heavy charged particles radiation: clinical and environmental implications[J]. Medicina (Kaunas), 2019, 55(9). DOI:10.3390/medicina55090591. [20] Yahyapour R, Motevaseli E,Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: implications to radiation carcinogenesis and radiotherapy[J]. Curr Radiopharm, 2018, 11(1): 34-45. DOI:10.2174/1874471011666171229123130. [21] Gandhi S, Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies[J]. 2017, 36(2):375-393. DOI:10.1007/s10555-017-9669-x. [22] Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways[J]. Nat Rev Mol Cell Biol, 2019, 20(1): 5-20. DOI:10.1038/s41580-018-0059-1. [23] Gebert L F R,MacRae I J. Regulation of microRNA function in animals[J]. Nat Rev Mol Cell Biol, 2019, 20(1): 21-37. DOI:10.1038/s41580-018-0045-7. [24] Ahmad L, Zhang S Y, Casanova J L, et al. Human TBK1: A gatekeeper of neuroinflammation[J]. Trends Mol Med, 2016, 22(6): 511-527. DOI:10.1016/j.molmed.2016.04.006. [25] Oakes J A, Davies M C, Collins M O. TBK1: a new player in ALS linking autophagy and neuroinflammation[J]. Molecular Brain, 2017, 10(1): 5. DOI:10.1186/s13041-017-0287-x. [26] HU L, XIE H, LIU X, et al. TBK1 is a synthetic lethal target in cancer with VHL loss[J]. Mol Brain, 2020, 10(3): 460-475. DOI:10.1158/2159-8290.cd-19-0837. [27] XU D, JIN T, ZHU H, et al., TBK1 Suppresses RIPK1-Driven apoptosis and inflammation during development and in aging[J]. Cancer Discov, 2018, 174(6): 1477-1491. DOI:10.1016/j.cell.2018.07.041. [28] ZHAO P, WONG K I, SUN X, et al. TBK1 at the crossroads of inflammation and energy homeostasis in adipose tissue[J]. Cell, 2018, 172(4): 731-743. DOI:10.1016/j.cell.2018.01.007. [29] Durand J K, Zhang Q. Roles for the IKK-related kinases TBK1 and IKKε in cancer[J]. Cells, 2018, 7(9). DOI:10.3390/cells7090139. [30] Baldwin A S, Revach O Y. Targeting TANK-binding kinase 1 (TBK1) in cancer[J]. Cells, 2020, 24(11): 1065-1078. DOI:10.1080/14728222.2020.1826929. |