RADIATION PROTECTION ›› 2021, Vol. 41 ›› Issue (5): 394-403.
Previous Articles Next Articles
WANG Shuo, TUO Fei
Received:
2021-03-03
Online:
2021-09-20
Published:
2021-11-26
CLC Number:
WANG Shuo, TUO Fei. Analysis of the source and emission level of radioactive noble gas xenon at home and abroad[J].RADIATION PROTECTION, 2021, 41(5): 394-403.
[1] 王亚龙,陈莉云,张昌云,等. 大气环境中放射性氙同位素的监测技术[C] //第三届全国环境化学学术大会论文集.中国化学会,2005:96-97. WANG Yalong, CHEN Liyun, ZHANG Changyun, et al. Monitoring technology of radioxenon isotopes in atmospheric environment[C] //Proceedings of the third National Conference on Environmental Chemistry. Chinese Chemical Society, 2005:96-97. [2] 刘成安. 核军备控制核查技术概论[M]. 北京:国防工业出版社, 2007:58-64. LIU Chengan. Introduction to nuclear arms control verification technology[M]. Beijing:National Defense Industry Press, 2007:58-64. [3] Galan M, Kalinowskia M, Gheddou A, et al. New evaluated radioxenon decay data and its implications in nuclear explosion monitoring[J]. Journal of Environmental Radioactivity, 2018,192(10):628-634. [4] 张利兴. 禁核试核查中放射性惰性气体的监测[J]. 核技术, 2004,27(10):770-777. ZHANG Lixing. Radioactive noble gases monitoring for the verfication of the Comprehensice Nuclear-Test-Ban Treaty[J]. Nuclear Techniques,2004,27(10):770-777. [5] Saey P R J. The influence of radiopharmaceutical isotope production on the global radioxenon background[J]. Journal of Environmental Radioactivity, 2009,100(5):396-406. [6] Saey P R J, Auer M, Becker A, et al. The influence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the Northern Hemisphere and during the start-up of another facility in the Southern Hemisphere[J]. Journal of Environmental Radioactivity, 2010,101(9):730-738. [7] Hoffman I, Berg R. Medical isotope production, research reactors and their contribution to the global xenon background[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018,318(4):165-173. [8] Kalinowski M B, Tuma M P. Global radioxenon emission inventory based on nuclear power reactor reports[J]. Journal of Environmental Radioactivity, 2009,99(1):58-70. [9] Bowyer T W, Abel K H, Hensley W K, et al. Ambient 133Xe levels in the Northeast US[J]. Journal of Environmental Radioactivity, 1997,37(2):143-153. [10] 陈占营, 黑东炜, 王建龙. CTBT大气放射性氙监测技术进展[J]. 现代应用物理, 2018,9(03):12-22. CHEN Zhanying, HEI Dongwei, WANG Jianlong. Progress of CTBT atmospheric radioactive xenon monitoring technology [J]. Modern Applied Physics, 2018,9(03):12-22. [11] Achim P, Generoso S, Morin M, et al. Characterization of Xe-133 global atmospheric background: Implications for the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty[J]. Journal of Geophysical Research: Atmospheres, 2016,121(9):4951-4966. [12] Abrahamsen B, Bonnevienielsen V, Ebbesen E N, et al. Computation and analysis of the global distribution of the radioxenon isotope 133Xe based on emissions from nuclear power plants and radioisotope production facilities and its relevance for the verification of the Nuclear-Test-Ban Treaty[J]. Pure & Applied Geophysics, 2010,167(4-5):541-557. [13] Saey P R J, Bean M, Becker A, et al. A long distance measurement of radioxenon in Yellowknife, Canada, in late October 2006[J]. Geophysical Research Letters, 2007,34(20):L20802. [14] 张利兴. 世界各国对朝鲜两次核试验泄漏的放射性氙的测定[C] //中国核学会核化学与放射化学分会,第九届全国核化学与放射化学学术研讨会. 中国内蒙古赤峰, 2010:28-29. ZHANG Lixing. The world's determination of radioactive xenon released by north Korea's two nuclear tests[C]//Nuclear and Raiochemistry, Chinese Nuclear Society, 9th National symposium on Nuclear and Radiochemistry. Chifeng, Inner Mongolia, China, 2010:28-29. [15] Ringbom A, Elmgren K, Lindh K, et al. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006[J]. Journal of Radioanalytical & Nuclear Chemistry, 2009,282(3):773. [16] Kurzeja R J, Buckley R L, Werth D W, et al. Detection of nuclear testing from surface concentration measurements: Analysis of radioxenon from the February 2013 underground test in North Korea[J]. Atmospheric Environment, 2018,176(3):274-291. [17] Ringbom A, Axelsson A, Aldener M, et al. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013[J]. Journal of Environmental Radioactivity, 2014,128(1):47-63. [18] 徐雪峰, 田东风, 伍钧, 等. 对高崎台站放射性核素Xe监测异常的溯源分析[J]. 现代应用物理, 2016,7(01):64-70. XU Xuefeng, TIAN Dongfeng, WU Jun, et al. Backtracing analyses on abnormal results in monitoring of xenon at Takasaki station[J]. Modern Applied Physics, 2016,7(01):64-70. [19] Meutter P D, Camps J, Delcloo A, et al. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling[J]. Scientific Reports, 2017,7(1):8762. [20] International Atomic Energy Agency. Nuclear Power Reactors in the World: Reference Data Series No. 2[R]. Vienna:Austria,2020. [21] 袁之伦, 李宏宇, 唐丽丽, 等. 我国核电厂气态流出物中惰性气体监测现状[J]. 同位素, 2013,26(04):244-248. YUAN Zhilun, LI Hongyu, TANG Lili, et al. Study on monitoring capacity of noble gas for nuclear power plant effluent[J]. Journal of Isotopes,2013,26(04):244-248. [22] Saey P R J, Wotawa G, De Geer L E, et al. Radioxenon background at high northern latitudes[J]. Journal of Geophysical Research, 2006,111(D17):306. [23] Christophe G, B K M, Jonathan B, et al. Setting the baseline for estimated background observations at IMS systems of four radioxenon isotopes in 2014[J]. Journal of Environmental Radioactivity, 2017,178-179:279-314. [24] United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation[R]. New York: United Nations, 2000. [25] 苏州热工研究院有限公司,环境保护部核与辐射安全中心.核动力厂环境辐射防护规定:GB 6249—2011[S]. 北京:中国环境科学出版社,2011. [26] 中华人民共和国生态环境部. 关于核电厂机组环境影响报告书的批复[EB/OL]. (2008-04-28)[2017-07-13]. http://www.mee.gov.cn/. Ministry of Ecology and Environment of the People's Republic of China. Reply to the environmental impact report of nuclear power plant units[EB/OL]. (2008-04-28)[2017-07-13]. http://www.mee.gov.cn/. [27] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究[J]. 核安全, 2020,19(05):27-34. HUANG Yanjun, SHA Xiangdong, ZHU Zhaowen, et al. Study on key nuclides of effluent monitoring in pressurized water reactor nuclear power plant[J]. Nuclear Safety, 2020,19(05):27-34. [28] International Atomic Energy Agency. Production technologies for Molybdenum-99 and Technetium-99m: IAEA-TECDOC-1065[R].Vienna:Austria,1999. [29] Matthews K M, Bowyer T W, Saey P R J, et al. The workshop on signatures of medical and industrial isotope production—WOSMIP; Strassoldo, Italy, 1–3 July 2009[J]. Journal of Environmental Radioactivity, 2012,110:1-6. [30] WOSMIP. WOSMIP V—Workshop on signatures of medical and industrial isotope production[C]. Vienna International Center, Vienna, Austria, 2010. [31] Saey P R J, Bowyer T W, Ringbom A. Isotopic noble gas signatures released from medical isotope production facilities—Simulations and measurements[J]. Applied Radiation and Isotopes, 2010,68(9):1846-54. [32] CTBTO. Fukushima-related Measurements by CTBTO. Comprehensive Nuclear-Test-Ban Trea-ty Organization, Preparatory Commission [EB/OL]. (2021-01-20)[1]. https://www.ctbto.org. [33] Thakur P, Ballard S, Nelson R. An overview of Fukushima radionuclides measured in the northern hemisphere[J]. Science of the Total Environment, 2013,458-460:577-613. [34] Bowyer T W, Biegalski S R, Cooper M, et al. Elevated radioxenon detected remotely following the Fukushima nuclear accident[J]. Journal of Environmental Radioactivity, 2015,102(7):681-687. [35] 王蕾, 郑国栋, 赵顺平, 等. 日本福岛核事故对我国大陆环境影响[J]. 辐射防护, 2012,32(6):325-335. WANG Lei, ZHENG Guodong, ZHAO Shunping, et al. Post-accident leakage and discharge of radioactive waste liquid at Fukushima Dai-ichi NPP and its environmental impacts[J]. Radiation Protection,2012,32(6):325-335. [36] ZHOU C, ZHOU G, FENG S, et al. Atmospheric radioxenon isotope monitoring in Beijing after the Fukushima nuclear power plant accident[J]. Applied Radiation and Isotopes, 2013,72(2):123-127. [37] Mcintyre J I, Abel K H, Bowyer T W, et al. Measurements of ambient radioxenon levels using the automated radioxenon sampler/analyzer (ARSA)[J]. Journal of Radioanalytical & Nuclear Chemistry, 2001,248(3):629-635. [38] Fontaine J P, Pointurier F, Blanchard X, et al. Atmospheric xenon radioactive isotope monitoring[J]. Journal of Environmental Radioactivity, 2004,72(1-2):129-135. [39] Ringbom A, Larson T, Axelsson A, et al. SAUNA—A system for automatic sampling, processing, and analysis of radioactive xenon[J]. Nuclear Inst & Methods in Physics Research A, 2003,508(3):542-553. [40] Prelovskii V V, Kazarinov N M, Donets A Y, et al. The ARIX-03F mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas[J]. Instruments and Experimental Techniques, 2007,50(3):393-397. [41] Topin S, Greau C, Deliere L, et al. SPALAX new generation: New process design for a more efficient xenon production system for the CTBT noble gas network[J]. Journal of Environmental Radioactivity, 2015,149:43-50. [42] Topin S, Gross P, Achim P, et al. 6 months of radioxenon detection in western Europe with the SPALAX-New generation system—Part1: Metrological capabilities[J]. Journal of Environmental Radioactivity,2020,225:106442. [43] 武山, 陈占营, 张昌云, 等. 固定式大气放射性氙取样器的研制[C] //第十三届全国核化学与放射化学学术研讨会论文摘要集.中国核学会,2014:1. WU Shan, CHEN Zhanying, ZHANG Changyun, et al. Development of fixed atmospheric radioactive xenon sampler[C]//Abstracts of the 13th National Symposium on Nuclear and Radiochemistry. Chinese Nuclear Society, 2014:1. [44] Saey P R J. Ultra-low-level measurements of argon, krypton and radioxenon for treaty verification purposes[J]. Esarda Bulletin, 2007,(36):43-55. [45] Pistner C,Kalinowski M B, Liao Y Y, et al. Discrimination of nuclear explosions against civilian sources based on atmospheric radioiodine isotopic activity ratios[J]. Pure and Applied Geophysics, 2014,171(3-5):669-676. [46] 吴保见, 王昆, 贾立, 等. 源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响[J]. 气候与环境研究, 2017,22(01):10-22. WU Baojian, WANG Kun, JIA Li, et al. Influences of source term on long-range transport of radionuclides from the Fukushima Daiichi nuclear accident with FLEXPART model [J]. Climatic and Environmental Research, 2017,22(01):10-22. [47] Meutter P D, Camps J, Delcloo A, et al. Backtracking radioxenon in europe using ensemble transport and dispersion modelling[C]// International Technical Meeting on Air Pollution Modelling and its Application. Springer, Cham, 2016. [48] Generoso S, Achim P, Morin M, et al. Seasonal variability of Xe-133 global atmospheric background: Characterization and implications for the international monitoring system of the Comprehensive Nuclear-Test-Ban Treaty[J]. Journal of Geophysical Research: Atmospheres, 2018,123(3):1865-1882. [49] Brioude J, Arnold D, Stohl A, et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.0[J]. Geoscientific Model Development Discussions, 2013,6(3):3615-3654. |
[1] | ZHENG Wei, WANG Zhaohui, LIN Peng, ZHOU Dongsheng, QIAO Baoquan, ZOU Liping, LIU Xiajie. Discussion on the concentrative volume reduction technology of low level radioactive waste of nuclear power plant [J]. RADIATION PROTECTION, 2021, 41(4): 295-301. |
[2] | WANG Bing. Experience feedback on nuclear accident emergency drill in a certain nuclear power plant [J]. RADIATION PROTECTION, 2021, 41(4): 370-373. |
[3] | LI Hui, ZANG Yikun, HU Yipeng. Analysis on radiation protection design of AP1000 unit of Sanmen nuclear power plant [J]. RADIATION PROTECTION, 2021, 41(1): 44-49. |
[4] | ZHENG Wei, QIAO Baoquan, LIN Peng, ZHOU Dongsheng, ZOU Liping, WANG Zhaohui, ChenJunjie, LIU Xiajie. Equipment development and performance experiment ofradioactive waste supercompactor [J]. RADIATION PROTECTION, 2021, 41(1): 58-63. |
[5] | SHA Xiangdong, HUANG Yanjun, ZENG Fan, SHANGGUAN Zhihong, JIANG Jing, WU Liansheng, CAO Zhonggang, CHEN Chaofeng. An investigation on discharge and analytical methods of 55Fe in liquid effluents from PWRs of nuclear power plants [J]. RADIATION PROTECTION, 2020, 40(5): 394-401. |
[6] | ZHU He, LIU Bin, JIN Li, WANG Maojie, HAO Limin, LI Langxin, WANG Min, YUE Huiguo, FENG Jianping. Practice on a new mode of nuclear accident emergency exercise in nuclear power plant [J]. RADIATION PROTECTION, 2020, 40(2): 162-167. |
[7] | LI Yongguo, LIU Yu, QIU Dangui, LIU Qun, YU Weiyue, CHANG Shen, HU Bo, YU Jie, HAN Lihong, HOU Jianrong. Performance research on an engineering scale prototype activated carbon delay bed for radioactive waste gas system [J]. RADIATION PROTECTION, 2020, 40(2): 144-149. |
[8] | REN Xueming, LI Xiaoning, MA Boyang. Discussion on potential surface contamination risk management of a nuclear power plant [J]. RADIATION PROTECTION, 2020, 40(2): 120-125. |
[9] | FANG Lan, LIU Xinhua, ZHU Zhaowen, XU Chunyan. Research on framework system of source term in primary circuit and emission source term at nuclear power plants [J]. RADIATION PROTECTION, 2020, 40(2): 89-98. |
[10] | JIANG Konghua, LIU Hanhan, TIAN Qing, SUN Kaibin. Assessment of public dose caused by effluent discharge at Tianwan nuclear plant (2007—2016) [J]. RADIATION PROTECTION, 2020, 40(1): 31-37. |
[11] | YANG Junwu, ZHOU Liangfa, GAO Xing, LUN Zhengming, LIU Qiang, ZHOU Zhihui, XU Qiang, LI Wei. Radiation protection monitoring and control under the condition of fuel defects for PWR [J]. RADIATION PROTECTION, 2019, 39(5): 365-371. |
[12] | HUANG Yanjun,HE Yi,SHANGGUAN Zhihong,CHEN Chaofeng,ZHAO Feng. Discussion on some critical issues in the emergency monitoring program of environmental radiation in nuclear power plant [J]. RADIATION PROTECTION, 2019, 39(5): 355-364. |
[13] | ZHANG Wei, DONG Hailong, RUAN Minzhi. Applicability analysis of Ceramic Melter technology in vitrification ofhigh level radioactive liquid waste from spent fuelreprocessing of nuclear power plants [J]. RADIATION PROTECTION, 2019, 39(4): 322-330. |
[14] | LI Hua, LI Jiannan, GUO Jie, LIAO Tong. Calculated simulation of the influence of liquid effluentfrom nuclear power plant on Yangjiang sea area [J]. RADIATION PROTECTION, 2019, 39(4): 267-273. |
[15] | LIU Xinhua, ZHANG Ailing, XU Chunyan, FANG Lan, ZHU Zhaowen. Liquid-to-gas discharge of liquid effluent from NPPs in the arealacking receiving water: the concept and its application principles [J]. RADIATION PROTECTION, 2019, 39(3): 207-212. |
|