中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2013, Vol. 39 ›› Issue (1): 40-44.doi: 10.3969/j.issn.1674-1579.2013.01.007

• 技术交流 • 上一篇    下一篇

INS/GIS组合导航方法研究

摘要: 针对GIS量测误差统计信息不明确,且量测信息具有随机性和有限性的特点,提出了采用非等间隔并解决量测滞后的滤波算法,设计了相应的卡尔曼滤波算法和递推最小二乘算法.建立了INS/GIS组合导航数学模型,通过仿真分析对比了上述两种算法的滤波精度,结果表明,改进的卡尔曼滤波方法优于递推最小二乘估计方法,可有效提高导航精度.   

  1. (1.宇航智能控制技术国家级重点实验室,北京 100854;2.北京航天自动控制研究所,北京 100854)
  • 出版日期:2013-02-24 发布日期:2013-02-26
  • 作者简介:作者简介:罗婷(1982—),女,硕士研究生,研究方向为导航与制导;高晓颖(1969—),男,研究员,研究方向为导航、制导与控制;王丽娜(1979—),女,高级工程师,研究方向为计算机应用技术.

On the INS/GIS Integrated Navigation Algorithm

Abstract:Focused on the ambiguity of the statistical information about GIS measurement error and the random, timedelay characteristics of the measurement output, this paper gives a filter algorithm for solving the problem derived from incoordinate interval and measurement delay. This paper designes the corresponding Kalman filter and the LS algorithm. Based on the INS/GIS integrated navigation mathematical model, the accuracy of the improved Kalman filter and the improved LS algorithm are analyzed. The simulation results verify the validity of the improved Kalman filter.   

  1. (1.National Laboratory of Aerospace Intelligent Control Technology, Beijing 100854, China;
    2.Beijing Aerospace Automatic Control Institute, Beijing 100854, China)
  • Online:2013-02-24 Published:2013-02-26

摘要: 摘要: 针对GIS量测误差统计信息不明确,且量测信息具有随机性和有限性的特点,提出了采用非等间隔并解决量测滞后的滤波算法,设计了相应的卡尔曼滤波算法和递推最小二乘算法.建立了INS/GIS组合导航数学模型,通过仿真分析对比了上述两种算法的滤波精度,结果表明,改进的卡尔曼滤波方法优于递推最小二乘估计方法,可有效提高导航精度.

关键词: 关键词: GIS, 组合导航, 非等间隔, 量测滞后, 卡尔曼滤波, 递推最小二乘滤波

Abstract: Abstract:Focused on the ambiguity of the statistical information about GIS measurement error and the random, timedelay characteristics of the measurement output, this paper gives a filter algorithm for solving the problem derived from incoordinate interval and measurement delay. This paper designes the corresponding Kalman filter and the LS algorithm. Based on the INS/GIS integrated navigation mathematical model, the accuracy of the improved Kalman filter and the improved LS algorithm are analyzed. The simulation results verify the validity of the improved Kalman filter.

Key words: Keywords:GIS, integrated navigation, incoordinate interval, measurement delay, Kalman filter, recursive LS filter

中图分类号: 

  • TP391.9