中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用

• 论文与报告 • 上一篇    下一篇

适用于时变不确定系统的并行模型自适应估计

 熊凯, 魏春岭, 刘良栋   

  1. 1.北京控制工程研究所,北京 100190;2.空间智能控制技术重点实验室,北京 100190.
  • 出版日期:2018-04-25 发布日期:2018-05-16
  • 作者简介:作者简介:熊凯(1976—),男,研究员,研究方向为非线性滤波和航天器自主导航;魏春岭(1971—),男,研究员,研究方向为非线性滤波和航天器自主导航;刘良栋(1943—),男,研究员,研究方向为非线性滤波和航天器自主导航.
  • 基金资助:

    国家自然科学基金资助项目(61573059、61690215),国家杰出青年科学基金资助项目(61525301),北京市自然科学基金资助项目(4162070).

     

ParallelModel Adaptive Estimation for TimeVarying Uncertain Systems

 XIONG  Kai, WEI  Chun-Ling, LIU  Liang-Dong-   

  1. 1.Beijing Institute of Control Engineering, Beijing 100190, China;2.Science and Technology on Space Intelligent Control Laboratory, Beijing 100190, China.
  • Online:2018-04-25 Published:2018-05-16
  • Supported by:

    Supported by The National Natural Science Foundation of China(61573059、61690215),The National Science Fund For Distinguished Young Scholars(61525301),Beijing Natural Science Foundation of China(4162070).

摘要: 摘要: 针对受到潜在模型不确定性影响的系统,设计一种并行模型自适应估计(PMAE)算法.以往基于不确定性系统模型设计的滤波算法,在模型精确的情况下,性能往往不及传统卡尔曼滤波(KF).为了解决该问题,设计基于多个并行滤波器的自适应状态估计算法,其中一个滤波器为KF,用于在未出现模型不确定性的情况下,对系统进行最优状态估计;另一个滤波器为扩维卡尔曼滤波(AKF),用于在出现模型不确定性的情况下,对不确定性模型参数进行辨识.以空间目标监视为例,分析算法的性能.仿真结果表明,利用PMAE算法能够自适应地对两个并行滤波器进行切换和折衷,从而有效应对模型中存在不确定性和不存在不确定性两种情况.  

关键词: 关键词: 多模型自适应估计, 不确定系统, 扩维卡尔曼滤波, 空间监视

Abstract: Abstract:An parallelmodel adaptive estimation (PMAE) algorithm is presented for a timevarying system where  model uncertainty may occur occasionally. Generally, an algorithm which is designed for an uncertain system may yield suboptimal performance when the model uncertainty does not occur. To cope with this problem, we propose to use two filters in parallel in a multiplemodel framework. One of the filters, an augmented Kalman filter (AKF), provides estimates of uncertain parameters when the model uncertainties occur, whereas the second filter, a Kalman filter (KF), yields high precision in the absence of the uncertainties. A space surveillance example is given in simulation to show the potential application of the presented algorithm. It indicates that the PMAE is efficient to deal with model uncertainty.    

Key words: Keywords:multiplemodel adaptive estimation, uncertain system, augmented Kalman filter, space surveillance

中图分类号: 

  • V417.7