[1]David J C, Timothy A M. Vented tank resupply experiment: flight test results[J]. Journal of Spacecraft and Rockets, 2006, 43(5): 1124-1130
[2]李永, 潘海林, 魏延明. 第二代表面张力贮箱的研究与应用进展[J]. 字航学报, 2007, 28(2): 503-507
Li Y, Pan H L, Wei Y M. The evolvement of the study and application on the second generation surface tension tank[J]. Journal of Astronautics, 2007, 28(2): 503-507
[3]Bicknell B A, Czysz P M. Low-g venting tests to support on-orbit fluid resupply systems[C].The 26th AIAA/ASME/SAE/ASEE Joint Propulsion Conference,Orlando, FL, July 16-18, 1990
[4]Dominick S M, Tegart J R, Driscoll S L, et al. Fluid acquisition and resupply experiments on space shuttle flights STS-53 and STS-57[R]. Alabama, USA: Marshall Space Flight Center, 2011
[5]Dipprey N F, Rotenberger S J. Orbital express propellant resupply servicing[C]. The 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, July 20-23, 2003
[6]李永, 潘海林, 魏延明, 等. 板式贮箱内部流动的定常和非定常数值模拟[J]. 宇航学报, 2007, 28(3): 623-627
Li Y, Pan H L, Wei Y M, et al. The steady and unsteady numerical simulations of the flow in vane type surface tension tank[J]. Journal of Astronautics, 2007, 28(3): 623-627
[7]胡齐, 陈健, 李永. 微重力板式贮箱推进剂重定位的数值仿真[J]. 空间控制技术与应用, 2009, 35(6): 54-57
Hu Q, Chen J, Li Y. Numerical simulation for reorientation of propellant in a vane tank under microgravity[J]. Aerospace Control and Application, 2009, 35(6): 54-57
[8]胡齐, 李永, 耿永兵, 等. 一种板式推进剂管理装置(PMD)性能的数值仿真[J]. 空间控制技术与应用, 2010, 36(3): 55-58
Hu Q, Li Y, Geng Y B, et al. Numerical simulation for capability of a vane PMD to manage propellant[J]. Aerospace Control and Application, 2010, 36(3): 55-58
[9]李永, 胡齐, 潘海林, 等. 推进剂在轨加注流体传输过程的数值模拟和地面试验研究[J]. 空间控制技术与应用, 2011, 37(4): 54-57
Li Y, Hu Q, Pan H L, et al. Numerical simulation and ground test research on orbital refueling process[J]. Aerospace Control and Application, 2011, 37(4): 54-57
[10]魏月兴, 陈小前, 黄奕勇. 内角流动及其在卫星贮箱设计中的应用[J]. 中国科学, 2011, 41(9): 1218-1224
Wei Y X, Chen X Q, Huang Y Y. Interior corner flow theory and its application to the satellite propellant management device design[J]. Science China, 2011, 41(9): 1218-1224
[11]李京浩, 陈小前, 黄奕勇, 等. 微重力环境下的不对称内角流动研究[J]. 中国科学, 2012, 42(8): 957-962
Li J H, Chen X Q, Huang Y Y, et al. Study on asymmetric interior corner flow in microgravity condition[J]. Science China, 2012, 42(8): 957-962
[12]李京浩, 陈小前, 黄奕勇. 基于内角流动的板式表面张力贮箱内推进剂流动过程研究[J]. 国防科技大学学报, 2012, 34(4): 18-21
Li J H, Chen X Q, Huang Y Y. A study of propellant flow in the vanetype surface tension tank based on interior corner flow[J]. Journal of National University of Defense Technology, 2012, 34(4): 18-21
[13]张天平. 表面张力贮箱推进剂管理装置设计进展[J]. 中国空间科学技术, 2000(5): 36-42
Zhang T P. The progress in design of propellant management devices for surface tension tanks[J]. Chinese Space Science and Technology, 2000(5): 36-42
[14]薛国宇, 陈志坚, 王德忠. 低温表面张力贮箱研究[J]. 火箭推进, 2006, 31(3): 26-29
Xue G Y, Chen Z J, Wang D Z. Study on cryogenic surface tension propellant tank[J]. Journal of Rocket Propulsion, 2006, 31(3): 26-29
[15]胡文瑞, 徐硕昌. 微重力流体力学[M]. 北京: 科学出版社,1999: 55-56
[16]李治. 卫星用表面张力贮箱设计研究[D]. 长沙: 国防科技大学, 2002
Li Z. Design and research of the surface tension tank for satellite[D].Changsha: National University of Defense Technology, 2002
[17]刘桢, 李红, 褚桂敏, 等. 液体流过金属编织网的流阻损失[J]. 强度与环境, 2010, 37(2): 4248
Liu Z, Li H, Chu G M, et al. Pressure drop of fluid flowing through woven screens[J]. Structure & Environment Engineering, 2010, 37(2): 42-48
[18]Cady E C. Study of thermodynamic vent and screen baffle integration for orbital storage and transfer of liquid hydrogen[R]. Huntington Beach, California: NASA Lewis Research Center, August 1973
[19]McQuillen J B, Chao D F, Hall N R, et al. CFD simulations of flow in capillary flow liquid acquisition device channel[J]. World Academy of Science, Engineering and Technology, 2012, 68: 759-765 |