空间控制技术与应用 ›› 2016, Vol. 42 ›› Issue (5): 1-.doi: 10.3969/j.issn.1674-1579.2016.05.001
出版日期:
2016-10-20
发布日期:
2016-11-06
Online:
2016-10-20
Published:
2016-11-06
摘要: 火星大气进入过程的自主导航性能是影响火星着陆能力的重要因素之一.在此期间,导航方法的设计面临着可用敏感器少、环境气动等参数不确定大的困难.对火星进入过程中几种可用的自主导航方法的原理进行了阐述,探讨了其中的关键技术和研究现状,并对这些导航方法的优缺点进行了对比.针对当前进入段自主导航方式的不足,对如何提高火星进入段自主导航性能的手段进行了探讨.
中图分类号:
王大轶, 李茂登, 黄翔宇. 火星进入段自主导航技术研究综述[J]. 空间控制技术与应用, 2016, 42(5): 1-.
WANG Da-Yi, LI Mao-Deng, HUANG Xiang-Yu. Review of the Mars Atmospheric Entry Autonomous Navigation Technology[J]. , 2016, 42(5): 1-.
[1]王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J].空间控制技术与应用, 2009, 35(3): 612. WANG D Y,HUANG X Y.Survey of autonomous navigation and control for deep space exploration[J].Aerospace Contrd and Application, 2009, 35(3): 612. [2]欧阳自远, 李春来, 邹永廖, 等. 深空探测的进展与我国深空探测的发展战略[J].中国航天, 2002(12): 2832. OUYANG Z Y,LI C L,ZOU Y L,et al.Progress of deep space exploration and chinese deep space exploration strategy[J].Aerospace China, 2002(12): 2832. [3]崔平远, 于正湜, 朱圣英. 火星进入段自主导航技术研究现状与展望[J].宇航学报, 2013, 34(4): 447456. CUI P Y,YU Z T,ZHU S Y.Research progress and prospect of autonomous navigation techniques for mars entry phase[J].Journal of Astronautics, 2013, 34(4): 447456. [4]崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J].深空探测学报, 2014, 1(1): 1828. CUI P Y, GAO A, YU Z T. Research progress of autonomous navigation scheme for mars landing[J].Journal of Deep Space Exploration, 2014, 1(1): 1828. [5]WONG E C, MASCIARELLI J, SINGH G. Autonomous guidance and control design for hazard avoidance and safe landing on Mars[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Washington D.C.: AIAA, 2002. [6]Lévesque JF. Advanced navigation and guidance for highprecision planetary landing on Mars[R]. Department of electrical engineering. 2006. [7]徐超, 王大轶, 黄翔宇. 基于陆标图像的火星精确着陆自主导航方法研究[J]. 深空探测学报, 2016, 3(2): 150155. XU C, WANG D Y, HUANG X Y. Autonomous navigation for Mars pinpoint landing based on landmark image[J]. Journal of Deep Space Exploration, 2016, 3(2): 150155. [8]李建军, 王大轶. 一种图像辅助火星着陆段自主导航方法[J].宇航学报, 2016, 37(6): 687694. LI J J,WANG D Y.An imagebased autonomous navigation method for precise landing on Mars[J].Journal of Astronautics, 2016, 37(6): 687694. [9]王大轶, 徐超, 黄翔宇. 深空探测着陆过程序列图像自主导航综述[J].哈尔滨工业大学学报, 2016, 4: 002. WANG D Y,XU C,HUANG X Y.Overview of autonomous navigation based on sequential images for planetary landing[J].Journal of Harbin Institute of Technology, 2016, 4: 002. [10]张晓文, 李骥, 黄翔宇, 等. 基于陆标图像的天体定点着陆信息融合导航方法[J].空间控制技术与应用, 2014,40(6): 1015. ZHANG X W, LI J, HUANG X Y, et al. Informationfusionintegrated navigation for celestial body pinpoint landing based on landmark image[J].Aerospace Control and Application,2014,40(6): 1015. [11]王大轶, 黄翔宇, 关轶峰, 等.基于IMU配以测量修正的月球软着陆自主导航研究[J].宇航学报, 2007, 28(6): 15441549. WANG D Y,HUANG X Y,GUAN Y F,et al.Research on the autonomous navigation based on measurementupdated IMU for lunar soft landing[J].Journal of Astronautics, 2007, 28(6): 15441549. [12]MORABITO D. The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres[R]. IPN Progress Report, 2002. [13]LI S, PENG Y. Radio beacons/IMU integrated navigation for Mars entry[J].Advances in Space Research, 2011, 47(7): 12651279. [14]LIGHTSEY E G, MOGENSEN A E, BURKHART P D, et al. Realtime navigation for Mars missions using the Mars network[J].Journal of Spacecraft and Rockets, 2008, 45(3): 519533. [15]SAN MARTIN A M,LEE S W, WONG E C. The development of the MSL guidance, navigation, and control system for entry, descent, and landing. 2013. [16]EULER E. Navigating the Viking landers[J]. Navigation, 1978, 25(1): 1118. [17]DESAI P N, PRINCE J L, QUEEN E M, et al. Entry, descent, and landing performance of the mars phoenix lander[J].Journal of Spacecraft and Rockets, 2011, 48(5): 798808. [18]BURKHART P D, ELY T, DUNCAN C, et al.Expected EDL navigation performance with spacecraft to spacecraft radiometric data[C]//Jet Propulsion Laboratory, National Aeronautics and Space Administration. Pasadena, CA, 2005. [19]MARSCHKE J M, CRASSIDIS J L, LAM Q M. Multiple[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Washington D.C.: AIAA, 2008. [20]HEYNE M C, Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank[D]. The University of Texas at Austin, 2007. [21]邓剑峰, 高艾, 崔平远. 基于分层大气模型的火星进入段精确导航滤波方法[C]//深空探测技术专业委员会第十届学术年会论文集. 北京:中国宇航学会,2013. [22]伍凯, 崔平远, 崔祜涛. 基于多模型自适应估计的火星大气层进入段导航方法[C]//深空探测技术专业委员会第九届学术年会论文集 (上册). 北京:中国宇航学会,2012. [23]ZANETTI R,BiSHOP R. Adaptive entry navigation using inertial measurements[J].Advances in the Astronautical Sciences, 2007, 127(1): 457462. [24]DUBOISMATRA O, BISHOP R H. Multimodel navigation with gating networks for mars entry precision landing[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Washington D.C.: AIAA, 2004. [25]MARSCHKE J M,CRASSIDIS J L,LAM Q M. Multiple model adaptive estimation for inertial navigation during Mars entry[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Washington D.C.: AIAA, 2008. [26]陈晓, 张伟, 彭玉明.基于器间测量的火星进入过程实时高精度导航[J].航天返回与遥感, 2013, 33(6): 1723. CHEN X, ZHANG W, PENG Y M. Mars entry realtime navigation based on orbiter tracking data[J].Spacecraft Recovery & Remote Sensing, 2013, 33(6): 1723. [27]崔平远, 窦强, 高艾. 火星大气进入段通信“黑障”问题研究综述[J].宇航学报, 2014, 35(1): 213. CUI P Y,DOU Q,GAO A.Review of communication blackout problems encountered during mars entry phase[J].Journal of Astronautics, 2014, 35(1): 213. [28]YU Z,CUI P,ZHU S.On the observability of Mars entry navigation using radiometric measurements[J]. Advances in Space Research, 2014, 54(8): 15131524. [29]韩婷婷, 史弦, 简念川, 等.火星全球导航卫星系统[J].航天器工程, 2011, 20(2): 1419. HAN T T,SHI X,JIAN N C,et al.Preliminary design of the constellation distribution for a proposed Mars GNSS[J].Spacecraft Engineering, 2011, 20(2): 1419. [30]韩婷婷, 平劲松, 史弦,等.月球与火星的全球导航卫星系统星座初步设计分析[C]//深空探测技术专业委员会第七届学术年会论文集.北京:中国宇航学会,2010. [31]PASTOR P, GAY R S, STRIEPE S A, et al. Mars entry navigation from EKF processing of beacon data[C]//AIAA/AAS Astrodynamics Specialist Conference. Washington D.C.: AIAA, 2000. [32]YU Z, CUI P, ZHU S. Observabilitybased beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance, Control, and Dynamics, 2014: 18. [33]王轶博. 着陆器在火星大气进入段的自主导航方法研究[D]. 哈尔滨:哈尔滨工业大学,2011. [34]BRUNNER T, LAUFFENBURGER JP, CHANGEY S ,et al. Quaternionbased IMU and stochastic error modeling for intelligent vehicles[C]//The 2015 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2015. [35]FU H, YANG Y, XIAO Q, et al. Autonomous navigation method based on unbiased minimumvariance estimation during Mars entry[J].Advances in Space Research, 2015, 55: 15121528. [36]LOU T, FU H, ZHANG Y, et al. Consider unobservable uncertain parameters using radio beacon navigation during Mars entry[J]. Advances in Space Research, 2014, 55: 10381054. [37]柏楠, 苑景春, 王希洋, 等. 空天飞行器大气传感技术研究[J].飞航导弹, 2014(6): 39. [38]INGOLDBY R, MICHEL F, FLAHERTY T, et al. Entry data analysis for Viking Landers 1 and 2[R]. NASA CR159388, 1976. [39]KARLGAARD C D, BECK R E, O’Keefe S A, et al.Mars entry atmospheric data system modeling and algorithm development[R].AIAA Paper, 2009, 3916. [40]BRENT R C, WHITMORE S A, ROBACK V E. Flush Airdata Sensing System Calibration Procedures and Results for Blunt Forebodies. 1999. [41]PRUETT C D, WOLF H,HECK M L, et al. Innovative air data system for the space shuttle orbiter[J].Journal of Spacecraft and Rockets, 1983, 20(1): 6169. [42]DUTTA S,BRAUN R D, KARLGAARD C D. Atmospheric data system sensor placement optimization for Mars entry, descent, and landing[J]. Journal of Spacecraft and Rockets, 2013, 51(1): 163174. [43]SIEMERS P M. Air data system optimization using a genetic algorithm. 1992. [44]DUTTA S, BRAUN R D, CramérRao LowerBound Optimization of Flush Atmospheric Data System Sensor Placement[J].Journal of Spacecraft and Rockets, 2014, 51(6): 17731788. [45]李其畅, 刘劲帆, 刘昕, 等. 嵌入式大气数据三点解算方法初步研究[J].空气动力学学报, 2014, 32(3): 360363. LI Q C, LIU J F, LIU X, et al. The primary study of 3point calculation method for the flush air data system[J].Acta Aerodynamica Sinica, 2014, 32(3): 360363. [46]WANG D Y, LI M D,HUANG X Y. Analytical solutions of generalized triples algorithm for flush airdata sensing systems[C]//Guidance, control and dynamics, 2016 (accepted). [47]WEISS S. Comparing three algorithms for modeling flush air data systems[C]//AIAA, 2002. 535. [48]孟博.跨音速/高超音速大气数据测量技术研究[D]. 南京:南京航空航天大学,2011. [49]ROHLOFF T J,WHITMORE SA,CATTON I.Faulttolerant neural network algorithm for flush air data sensing[J].Journal of Aircraft, 1999, 36(3): 541549. [50]赵磊, 陆宇平.基于 RBF 神经网络的 FADS 系统及其算法研究[J].飞机设计, 2012(1): 4347. [51]KARLGAARD C D, KUTTY P, SCHOENENBERGER M, et al.Mars science laboratory entry atmospheric data system trajectory and atmosphere reconstruction[J].Journal of Spacecraft and Rockets, 2014, 51(4): 10291047. [52]DUTTA S, BRAUN R D, RUSSELL R P, et al.Comparison of statistical estimation techniques for mars entry, descent, and landing reconstruction[J].Journal of Spacecraft and Rockets, 2013, 50(6):12071221. [53]BAUMANN E,PAHLE J W, DAVIS M C,er al. X43A flush airdata sensing system flighttest results[J].Journal of Spacecraft and Rockets, 2010, 47(1): 4861. [54]叶玮, 郑守铎, 温瑞珩. FADS/INS组合法迎角, 侧滑角测量方法研究[J].飞机设计, 2008. 27(6): 1418. [55]宋述杰, 邓建华. 应用INS/GPS系统数据估计迎角和侧滑角的方法研究[J].西北工业大学学报, 2005, 23(2): 231234. SONG S J, DENG J H. Applying colgren’s idea to accurately estimating angleofattack and sideslip angle using INS/GPS system data[J].Journal of northwestern polytechnical university, 2005, 23(2): 231234. [56]杨雨, 陆宇平, 吴在桂. 嵌入式大气数据传感系统中的组合滤波技术[J].传感器与微系统, 2009, 28(5): 117120. |
[1] | 黄剑斌, 黄龙飞, 韩旭, 蒙波, 李志, 王文龙, 李文. 对卫星柔性对接补加一体化机构建模与设计[J]. 空间控制技术与应用, 2018, 44(5): 30-37. |
[2] | 韩冬, 黄攀峰, 刘习尧. 空间机器人抓捕目标碰撞后的复合体稳定控制[J]. 空间控制技术与应用, 2018, 44(5): 38-46. |
[3] | 刘淼, 李忠奎. 不确定通讯下的异构多智能体网络鲁棒编队控制[J]. 空间控制技术与应用, 2018, 44(5): 47-54. |
[4] | 孙云龙, 袁长清, 李政广. 径向共线多星库仑编队飞行构型保持研究[J]. 空间控制技术与应用, 2018, 44(4): 16-25. |
[5] | 胡锦昌, 张洪华, 王泽国, 陈上上. 关于干扰作用下航天器姿态饱和控制的结果[J]. 空间控制技术与应用, 2018, 44(4): 56-60. |
[6] | 苏少侃, 彭勃, 王立伟, 郑炜, 常涛, 陈明阳. 一种新型双环控制并联均流稳压电路[J]. 空间控制技术与应用, 2018, 44(4): 72-78. |
[7] | 赵双, 张雅声, 戴桦宇, 齐跃 . 卫星导航系统失效性能分析与重构方法研究[J]. 空间控制技术与应用, 2018, 44(2): 49-55. |
[8] | 孙秀清, 张笃周, 王立, 吴奋陟. 一种改进的投影装置标定方法[J]. 空间控制技术与应用, 2018, 44(2): 62-66. |
[9] | 王同磊, 陈朝晖 . 一种软件脆弱性自动分析定位的方法[J]. 空间控制技术与应用, 2018, 44(2): 73-78. |
[10] | 隋杰, 程会艳, 余成武, 武延鹏, 王晓燕, 郑然. 星敏感器光轴热稳定性仿真分析方法[J]. 空间控制技术与应用, 2017, 43(4): 37-41. |
[11] | 李涛, 吴云. 一种非合作卫星目标立体视觉测量技术[J]. 空间控制技术与应用, 2017, 43(4): 52-56. |
[12] | 吴奋陟, 郭绍刚, 朱飞虎, 王立, 吴云, 刘达. 基于标定场的激光雷达两步标定方法[J]. 空间控制技术与应用, 2017, 43(4): 57-62. |
[13] | 陈建峰, 余成武, 程会艳, 隋杰, 武延鹏. 基于Bipod结构的星敏感器遮光罩安装结构优化设计[J]. 空间控制技术与应用, 2017, 43(4): 68-72. |
[14] | 程会艳, 钟红军, 王龙, 杨君, 郑然. 一种快速全天星图识别算法[J]. 空间控制技术与应用, 2017, 43(4): 73-78. |
[15] | 王菲, 袁建平, 袁静. 太阳帆航天器编队维持和重构的方法研究[J]. 空间控制技术与应用, 2017, 43(3): 7-14. |
|