RADIATION PROTECTION BULLETIN ›› 2018, Vol. 38 ›› Issue (5): 1-11.
Wu Yang, Xing Shan, Dai Xiongxin
Received:
2018-08-08
Online:
2018-10-20
Published:
2020-07-30
CLC Number:
Wu Yang, Xing Shan, Dai Xiongxin. Rapid Methods for Analysis of Actinides in Environmental Samples and Their Applications in Radiation Protection[J].RADIATION PROTECTION BULLETIN, 2018, 38(5): 1-11.
[1] | Ketterer M E, Zheng J, Yamada M. Applications of Transuranics as Tracers and Chronometers in the Environment [M]. Advances in Isotope Geochemistry, 2012:395-417. |
[2] | Maxwell S L, Jones V D. Rapid determination of actinides inurine by inductively coupled plasma mass spectrometry and alpha spectrometry: Ahybrid approach[J]. Talanta, 2009, 80(1):143-150. |
[3] | Hou X L. Determination of Long lived Radionuclides in the Environment using ICP-MS and AMS[J]. Journal of Analytical Science & Technology, 2011, 2:120-124. |
[4] | Vajda N, Kim C K. Determination of Transuranium Isotopes (Pu, Np, Am) by Radiometric Techniques: A Review of Analytical Methodology[J]. Analytical Chemistry, 2011, 83(12):4688-4719. |
[5] | Veliscek-Carolan J. Separation of actinides from spent nuclear fuel: A review[J]. Journal of Hazardous Materials, 2016, 318:266-281. |
[6] | Nash K L. Solvent Extraction and Ion Exchange The Chemistryof TALSPEAK: A Review of the Science[J], 2015, (2):37-41. |
[7] | Sadi B B, Rinaldo C, Spencer N, et al. An ion chromatographic separation method for the sequential determination of 90Sr, 241Am and Pu isotopes in a urine sample[J]. Journal of Radioanalytical andNuclear Chemistry, 2018, 316(1):179-189. |
[8] | Jassin L E. Radiochemical separation advancements using extraction chromatography: A review of recent Eichrom User's Group Workshop presentations with a focus on matrix interferences[J]. Journal of Radioanalytical andNuclear Chemistry, 2005, 263(1):93-96. |
[9] | Mellado J, Llauradó M, Rauret G. Determination of actinides and strontium in fish samples by extraction chromatography[J]. Analytica Chimica Acta, 2002, 458(2):367-374. |
[10] | Oh J S, Warwick P E, Croudace I W, et al. Rapid measurement of 241Pu activity at environmental levels using low level liquid scintillation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1):353-359. |
[11] | Todd A S, Sattelberg R M. Actinides in deer tissues at the rocky flats environmental technology site[J]. Integrated environmental assessment andmanagement, 2005, 1(4):391-396. |
[12] | Dai X X, Kramer-Tremblay S. Sequential determination of actinideisotopes and radiostrontium in swipe samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(2):461-466. |
[13] | Maxwell S L, Culligan B, Hutchison J B, et al. Rapid fusion methodfor the determination of Pu, Np, and Am in large soil samples[J]. Journal ofRadioanalytical and Nuclear Chemistry, 2015, 305(2):599-608. |
[14] | Epov V N, Douglas Evans R, Zheng J, et al. Rapid fingerprinting of239Pu and 240Pu in environmental samples with high U levelsusing on-line ion chromatography coupled with high-sensitivity quadrupole ICP-MS detection[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9):1131-1137. |
[15] | Yoon S, Ha W H, Park S, et al. Improved procedure for Pu/Am, and Uisotope analysis in fecal samples[J]. Journal of Radioanalytical and NuclearChemistry, 2018, 316(3):1151-1155. |
[16] | Maxwell S L, Culligan B, Hutchison J B, et al. Rapid method to determine actinides and 89/90Sr in limestone and marble samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(1):377-388. |
[17] | JureiS, Benedik L, Planinek P, et al. Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques[J]. Applied Radiation and Isotopes, 2014, 87:61-65. |
[18] | Luo M Y, Xing S, Yang Y G, et al. Sequential analyses of actinidesin large-size soil and sediment samples with total sample dissolution[J]. Journal of Environmental Radioactivity, 2018, 187:73-80. |
[19] | Dirican A, Sahin M. Comparison of acid leaching and fusion techniques to determine uranium in soil samples by alpha spectrometry[J]. Applied Radiation and Isotopes, 2016, 109:189-192. |
[20] | Warwick P E, Croudace I W, Oh J S. Radiochemical determination ofAm-241 and Pu(alpha) in environmental materials[J]. Analytical Chemistry, 2001, 73(14):3410-3416. |
[21] | Maxwell S L, Culligan B K, Hutchison J B, et al. Rapid fusion method for determination of actinides in fecal samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3):1533-1542. |
[22] | Maxwell S L, Culligan B K, Hutchison J B, et al. Rapid determination of actinides in seawater samples[J]. Journal of Radioanalytical and NuclearChemistry, 2014, 300(3):1175-1189. |
[23] | Shiraishi K, Ko S, Arae H, et al. Rapid analysis technique for strontium, thorium, and uranium in urine samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(2):307-310. |
[24] | Kumar R, Yadav J R, Rao D D. Separation and determination of 241Amin urine samples from radiation workers using PC88-A and alpha spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(2):451-454. |
[25] | Tyrpekl V, Vigier J F, Manara D, et al. Low temperature decomposition of U(IV) and Th(IV) oxalates to nanograined oxide powders[J]. Journal of Nuclear Materials, 2015, 460:200-208. |
[26] | Vajda N, Trvényi A, Kis-Benedek G, et al. Rapid method for thedetermination of actinides in soil and sediment samples by alpha spectrometry[J]. Radiochimica Acta, 2009, 97(8):395-401. |
[27] | Varga Z, Surányi G, Vajda N, et al. Rapid sequential determination of americium and plutonium in sediment and soil samples by ICP-SFMS and alpha-spectrometry[J]. Radiochimica Acta, 2007, 95(2):81-87. |
[28] | Gagné A, Surette J, Kramer-Tremblay S, et al. A bioassay methodfor americium and curium in feces[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1):477-482. |
[29] | Kiliari T, Pashalidis I. Alpha spectroscopic analysis of actinides(Th, U and Pu) after separation from aqueous solutions by cation-exchange andliquid extraction[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284(3):547-551. |
[30] | Mohapatra P K, Raut D R, Sengupta A. Extraction of uranyl ion fromnitric acid medium using solvent containing TOPO and its mixture with D2EHPAin room temperature ionic liquids[J]. Separation and Purification Technology, 2014, 133:69-75. |
[31] | Rama Swami K, Kumaresan R, Venkatesan K A, et al. Synergic extraction of Am(III) and Eu(III) in N, N-dioctyl-2-hydroxyacetamide-bis(2-ethylhexyl)phosphoric acid solvent system[J]. Journal of Molecular Liquids, 2017, 232(Iii):507-515. |
[32] | Das D, Juvekar V A, Roy S B, et al. Comparative studies on co-extraction of uranium(VI) and different mineral acid from aqueous feed solutions using TBP, TOPO and TOA[J]. Journal of Radioanalytical & Nuclear Chemistry, 2014, 300(1):333-343. |
[33] | I Billard, A Ouadi, C Gaillard, et al. Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids:from discovery to understanding [J], Analytical & Bioanalytical Chemistry, 2011, 400(6):1555-1566. |
[34] | Bokori E, Groska J, Vajda N. Determination of actinides in radioactive waste after separation on a single DGA resin column HCl[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309:1-14. |
[35] | Dai X X, Kramer-Tremblay S. Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water andswipe samples[J]. Analytical Chemistry, 2014, 86(11):5441-5447. |
[36] | Hosseini M S, Raissi H, Yavari H R. Synergistic flotation of U (VI) alizarin complex with some diamines followed by spectrophotometric determination of U(VI) using[J]. Analytica Chimica Acta, 2006, 559:181-185. |
[37] | Madrakian T, Afkhami A, Rahimi M. Removal, preconcentration and spectrophotometric determination of U(VI) from water samples using modified maghemite nanoparticles[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(2):597-602. |
[38] | Sharma S, Rahman N, Najmul S, et al. Spectrophotometric Determination of U (VI) with Rifampicin in Soil[J]. Journal of Chinese Chemical Society, 2011, 58:127-135. |
[39] | Anwer E, Nagiba T, Hassan Y, et al. Fluorimetric Determination ofSome Sulfur Containing Compounds Through Complex Formation with Terbium (Tb+3) and Uranium (U+3)[J]. Journal of Fluorescence, 2007, 17(3):293-300. |
[40] | Prasad P P, Murty B N, Muthyalu R, et al. Laser Induced Luminescence Method for the determination of Soluble Uranium in Surface Soil[J]. Journalof Renewable Agriculture, 2013, 1(5):67-76. |
[41] | Rathore D P S, Tarafder P K, Kayal M, et al. Application of a differential technique in laser-induced fluorimetry: simple and a precise method for the direct determination of uranium in mineralised rocks at the percentage level[J]. Analytica Chimica Acta, 2001, 434:201-208. |
[42] | Maxwell S L, Culligan B K, Kelsey-Wall A, et al. Rapid determination of actinides in emergency food samples[J]. Journal of Radioanalytical andNuclear Chemistry, 2012, 292(1):339-347. |
[43] | Reichenberger M A, Ito T, Ugorowski P B, et al. Electrodepositionof uranium and thorium onto small platinum electrodes[J]. Nuclear Instrumentsand Methods in Physics Research, Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 812:12-16. |
[44] | Oh J S, Warwick P E, Croudace I W, et al. Evaluation of three electrodeposition procedures for uranium, plutonium and americium[J]. Applied Radiation and Isotopes, 2014, 87:233-237. |
[45] | Sill C W. Precipitation of actinides as fluorides or hydroxides for high-resolution alpha spectrometry[J]. Nuclear and Chemical Waste Management, 1987, 7(3-4):201-215. |
[46] | Sill C W, Williams R L. Preparation of Actinides for α Spectrometry without Electrodeposition[J]. Analytical Chemistry, 1981, 53(3):412-415. |
[47] | Maxwell S L, Culligan B K, Noyes G W. Rapid separation method foractinides in emergency air filter samples[J]. Applied Radiation and Isotopes, 2010, 68(12):2125-2131. |
[48] | Dai X X, Kramer-Tremblay S. An emergency bioassay method for actinides in urine[J]. Health Physics, 2011, 101(2):144-147. |
[49] | Xu Y H, Qiao J X, Hou X L, et al. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements[J]. Talanta, 2014, 119(12):590-595. |
[50] | Kossert K, Bokeloh K, Dersch R, et al. Activity determination of227Ac and 223Ra by means of liquid scintillation counting and determination of nuclear decay data[J]. Applied Radiation and Isotopes, 2015, 95:143-152. |
[51] | Dai X X, Christl M, Kramer-Tremblay S, et al. Ultra-trace determination of plutonium in urine samples using a compact accelerator mass spectrometry system operating at 300 kV[J]. J. Anal. At. Spectrom., 2012, 27(1):126-130. |
[52] | Dai X X, Christl M, Kramer-Tremblay S, et al. Determination of Atto-to Femtogram Levels of Americium and Curium Isotopes in Large-Volume UrineSamples by Compact Accelerator Mass Spectrometry[J]. Analytical Chemistry, 2016, 88(5):2832-2837. |
[53] | Christl M, Dai X X, Lachner J, et al. Low energy AMS of americiumand curium[J]. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms, 2014, 331:225-232. |
[54] | Zhao X L, Kieser W E, Dai X X, et al. Preliminary studies of Pu measurement by AMS using PuF4[J]. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms, 2013, 294:356-360. |
[55] | Shi Y Q, Dai X X, Li C S, et al. ICP-MS method for Pu and Np isotopes in population monitoring by a micro-flow injection sample introduction system[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9):1708-1713. |
[56] | Qiao J X, Hou X L, Roos P, et al. Sequential injection approach for simultaneous determination of ultratrace plutonium and neptunium in urine withaccelerator mass spectrometry[J]. Analytical Chemistry, 2013, 85(18):8826-8833. |
[57] | Qiao J X, Hou X L, Roos P, et al. Rapid isolation of plutonium inenvironmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2011, 685(2):111-119. |
[58] | Qiao J X, Salminen-Paatero S, Rondahl S H, et al. Inter-laboratory exercise with an aim to compar methods for 90Sr and 239, 240Pu determination in environmental soil samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(2):827-827. |
[59] | Qiao J X, Hou X L, Roos P, et al. Rapid Determination of PlutoniumIsotopes in Environmental Samples Using Sequential Injection Extraction Chromatography and Detection by Inductively Coupled Plasma Mass Spectrometry[J]. Analytical Chemistry, 2009, 81(19):8185-8192. |
[60] | Shi Y, Dai X X, Collins R, et al. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry[J]. Health Physics, 2011, 101(2):148-153. |
[61] | Zheng J, Yamada M. Inductively coupled plasma-sector field mass spectrometry with a high-efficiency sample introduction system for the determination of Pu isotopes in settling particles at femtogram levels[J]. Talanta, 2006, 69:1246-1253. |
[62] | Kim C S, Kim C K, Lee K J. Determination of Pu Isotopes in Seawater by an On-Line Sequential Injection Technique with Sector Field Inductively Coupled Plasma Mass Spectrometry[J]. Analytical Chemistry, 2002, 74(15):3824-3832. |
[63] | Elliot N L, Bickel G A, Linauskas S H, et al. Determination of femtogram quantities of 239Pu and 240Pu in bioassay samples bythermal ionization mass spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 267(3):637-650. |
[64] | Aggarwal S K, Alamelu D. A novel approach for the determination of238Pu by thermal ionization mass spectrometry (TIMS) using interfering element correction methodology[J]. International Journal of Mass Spectrometry, 2005, 241(1):83-88. |
[65] | Aggarwal S K, Alamelu D, Khodade P S, et al. Determination of 238Pu in plutonium bearing fuels by thermal ionization mass spectrometry[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(3):775-778. |
[66] | Lee C G, Suzuki D, Esaka F, et al. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating techniquewithout chemical separation[J]. Talanta, 2015, 141:92-96. |
[67] | Maxwell S L. Rapid analysis of emergency urine and water samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 275(3):497-502. |
[68] | Habibi A, Boulet B, Gleizes M, et al. Rapid determination of actinides and 90Sr in river water[J]. Analytica Chimica Acta, 2015, 883:109-116. |
[69] | Qiao J X, Hansen V, Hou X L, et al. Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and240Pu in environmental soil and sediment[J]. Applied Radiation and Isotopes, 2012, 70(8):1698-1708. |
[70] | Shi Y, Collins R, Broome C. Determination of uranium, thorium andplutonium isotopes by ICP-MS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296(1):509-515. |
[71] | Brown J W N, Brockman J D, Robertson J D. Measurement of 239Pu in keratinous materials:A potential non-invasive bioassay for monitoringhuman exposure[J]. Applied Radiation and Isotopes, 2017, 128(May):132-135. |
[72] | Vostrotin V V, Fell T P, Smith T J, et al. Retrospective estimation of Plutonium-239 doses from transfer to the fetus for Mayak PA workers[J].International Journal of Radiation Biology, 2014, 90(11):1036-1042. |
[73] | Rzemek K, Czerwiński A, Dymecka M, et al. Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock[J]. Nukleonika, 2015, 60(1):181-186. |
[74] | Priest N D, Richardson R B, Edwards G W R. Toxicity of irradiatedadvanced heavy water reactor fuels[J]. Health Physics, 2013, 104(2):195-210. |
[75] | Maxwell S L, Culligan B K, Noyes G W. Rapid separation of actinides and radiostrontium in vegetation samples[J]. Journal of Radioanalytical andNuclear Chemistry, 2010, 286(1):273-282. |
[76] | Larivière D, Benkhedda K, Kiser S, et al. Rapid and automated sequential determination of ultra-trace long-lived actinides in air filters by inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2010, 2(3):259-267. |
[77] | Seto M, Uriu K, Kawaguchi I, et al. Assessment of Instructions onProtection Against Food Contaminated with Radiocesium in Japan in 2011[J]. Risk Analysis, 2018, 38(6):1154-1168. |
[78] | Yang G S, Tazoe H, Hayano K, et al. Isotopic compositions of 236U, 239Pu, and 240Pu in soil contaminated by the Fukushima Daiichi Nuclear Power Plant accident[J]. Scientific Reports, 2017, 7(1):13619-13619. |
[79] | Zheng J, Tagami K, Uchida S. Rapid analysis of U isotopes in vegetables using ICP-MS: Application to the emergency U monitoring after the nuclearaccident at TEPCO's Fukushima Dai-ichi power station[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(1):171-175. |
[80] | Zheng J, Tagami K, Uchida S. Release of plutonium isotopes into the environment from the fukushima daiichi nuclear power plant accident:What is known and what needs to be known[J]. Environmental Science & Technology. 2013, 47:9584-9595. |
[81] | Sakaguchi A, Kadokura A, Steier P, et al. Isotopic Determination of U, Pu and Cs in environmental waters following the Fukushima Daiichi Nuclear Power Plant accident[J]. Geochemical Journal, 2012, 46(4):355-360. |
[82] | Lujanien G, Valiulis D, Byenkien S, et al. Plutonium isotopes and 241Am in the atmosphere of Lithuania:A comparison of different source terms[J]. Atmospheric Environment, 2012, 61:419-427. |
[83] | Hain K, Faestermann T, Fimiani L, et al. Plutonium Isotopes (239~241Pu) Dissolved in Pacific Ocean Waters Detected by Accelerator MassSpectrometry:No Effects of the Fukushima Accident Observed[J]. EnvironmentalScience and Technology, 2017, 51(4):2031-2037. |
[1] | Liu Chang, Wang Rensheng. Submarine Nuclear Accident Medical Emergency Rescue [J]. RADIATION PROTECTION BULLETIN, 2018, 38(5): 28-31. |
[2] | Tian Ye, Wu Ke. Fingernail EPR in Vivo Measurement [J]. RADIATION PROTECTION BULLETIN, 2018, 38(2): 11-15. |
|