[1] Cho J H, Kim M S, Rhim J D. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum [J]. Radiat Eff Defects Solids, 2015,170(7):1-8. [2] Aghaz A, Faghihi R, Mortazavi S M J, et al. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range[J]. International Journal of Radiation Research, 2016, 14(2): 127-131. [3] Maghrabi H A, Vijayan A, Mohaddes F, et al. Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics[J]. Fibers and Polymers, 2016, 17(12):2047-2054. [4]Azman N, SiddiquiI S A, Hart R, et al. Effect of particle size, filler loadings and X-ray tube voltage on the transmitted X-ray transmission in tungsten oxide-epoxy composites [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2013, 71(1):62-67. [5] Sun K,Gu C,Liu Y,et al. Preparation and properties of lanthanum oxide/polypropylene composite fibers for X-ray shielding[J].Polymer Materials Science and Engineering,2016, 32(04):148-152+158. [6] Sutanto H, WJaya G, Hidayanto E, et al. Characteristic of silicone rubber as radioprotection materials on radiodiagnostic using X-ray conventional[C]//Journal of Physics: Conference Series. IOP Publishing, 2019, 1217(1):012044. [7] 杭巧娣. 关于 PVC 防辐射复合膜几个重要问题的探讨 [J]. 上海塑料, 2004, (3):23-27. [8] Aral N, Banu Nergis F, Candan C. An alternative X-ray shielding material based on coated textiles[J]. Textile Research Journal, 2016, 86(8):803-811. [9] 刘正懿. 抗紫外聚丙烯纤维及织物的制备及研究 [D]. 天津:天津工业大学, 2017. [10] Berger M J, Hubbell J H. XCOM: Photon cross sections on a personal computer[R]. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987. [11] Aghaz A, Faghihi R, Mortazavi S M J, et al. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range[J]. International Journal of Radiation Research, 2016, 14(2):127. [12] Kim S C, Dong K R, Chung W K. Performance evaluation of a medical radiation shielding sheet with barium as an environment-friendly material [J]. Journal of the Korean Physical Society, 2012, 60(1):165-70. [13] Pulford S, Fergusson M. A textile platform for non-lead radiation shielding apparel[J]. The Journal of the Textile Institute, 2016, 107(12):1610-1616. [14] Li L, Zhaohui S, Youping W. Radiation shielding and magnetic properties of rare earth/polymer composite[J]. China Synthetic Rubber Industry, 2001, 24(3):188-190. [15] Mehnati P, Malekzadeh R, Sooteh M Y. Application of personal non-lead nano-composite shields for radiation protection in diagnostic radiology: A systematic review and meta-analysis[J]. Nanomedicine Journal, 2020, 7(3):170-182. [16] Chai H, Tang X, Ni M, et al. Preparation and properties of novel, flexible, lead-free X-ray-shielding materials containing tungsten and bismuth (III) oxide[J]. Journal of Applied Polymer Science, 2016, 133(10):43012-43019. [17] Noor Azman N Z, Musa N F L, Nik Ab Razak N N A, et al. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3-PVA composites for X-ray shielding[J]. Applied Physics A, 2016, 122(9):1-9. [18] Cho J H. Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets [J]. Radiat Eff Defects Solids, 2014, 169(7):584-591. [19] Wang Y, Wang G, Hu T, et al. Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study[J]. Nuclear Engineering and Technology, 2020, 52(7):1565-1570. [20] Li J S, Dai Y D, Zhang Y, et al. Preparation and property of polyacrylic acid samarium/epoxy resin composite material for radiation-protection [J]. Atomic Energy Science & Technology, 2011, 45(1):117-123. [21] 李江苏. 核电工作和医用放射场所屏蔽低能光子的稀土基辐射防护材料的研究 [D]. 南京:南京航空航天大学, 2010. [22] Heaney D E, Norvill C. A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields [J]. Australasian physical & engineering sciences in medicine/supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine, 2006, 29(2):172-178. [23] Aral N, Nergis F B, Candan C. Investigation of X-ray attenuation and the flex resistance properties of fabrics coated with tungsten and barium sulphate additives[J]. Journal of Textile and Apparel,, 2016, 26(2):166-171. [24] Kusuktham B, Wichayasiri C, Udon S. X-ray attenuation of cotton fabrics coated with barium sulphate [J]. Journal of Metals, Materials and Minerals 2016,26(1):17-23. [25] 楼鹏飞, 贾清秀, 安超. 宽X射线防护稀土/聚丙烯纤维的制备与性能 [J]. 高分子材料科学与工程, 2019, 35(04): 158-165. [26] Brown F B, Barrett R F, Booth T E, et al. MCNP Version 5[J]. Transactions of the American Nuclear Society, 2002, 87(273):3902-3935. [27] Poludniowski G, Omar A, Bujila R, et al. SpekPy v2.0—A software toolkit for modeling X-ray tube spectra [J]. Medical Physics, 2021, 48(7):3630-3637. [28] Shafka Z M, Hannora A E, Sherif M M. Preparation of lead-polymer nano composite for nuclear shielding applications[J]. International Journal for Research in Applied Science and Engineering Technology, 2015, 3:1046-1049 [29] Kim S C, Cho S H. Analysis of the correlation between shielding material blending characteristics and porosity for radiation shielding films[J]. Applied Sciences, 2019, 9(9):1765-1765 [30] 刘力, 张立群, 金日光. 稀土/高分子复合材料的研究进展[J]. 中国稀土学报, 2001, 19(3):193-199. [31] Xu Q, Tang J, Wang Y, et al. Eu3+-induced aggregates of diblock copolymers and their photoluminescent property [J]. J Colloid Interface Sci, 2013, 394:630-638. [32] Wang M L, Zhang X H, Yin H Z, et al. The fluorescence of terbium complex and its application in wavelength conversion membrane [J]. Spectroscopy & Spectral Analysis, 2013,33(4):1009-1013. [33] Gao B, Fang L, Men J. Studies on preparation, structure and fluorescence emission of polymer-rare earth complexes composed of aryl carboxylic acid-functionalized polystyrene and Tb(Ⅲ) ion [J]. Polymer, 2012, 53(21):4709-4717. [34] Zhang J, Mi C, Wu H, et al. Synthesis of NaYF4: Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection[J]. Analytical Biochemistry, 2012, 421(2):673-679. [35] 贺磊. 新型稀土/橡胶复合材料的制备及其防辐射性能和磁性能的研究 [D]. 北京: 北京化工大学, 2005. [36] 陈业煌. 聚合物/无机纳米粒子复合材料的溶液浇铸法制备及性能研究 [D]. 武汉: 湖北工业大学, [37] Pulford S, Fergusson M. A textile platform for non-lead radiation shielding apparel[J]. The Journal of the Textile Institute, 2016, 107(12):1610-1616. [38] Kim S C, Dong K R, Chung W K. Performance evaluation of a medical radiation shielding sheet with barium as an environment-friendly material [J]. Journal of the Korean Physical Society, 2012, 60(1):165-170. [39] Azman N, Siddiqui S A, Low I M. Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic X-rays [J]. Applied Physics A, 2013, 110(1):137-144. [40] Nambiar S, Osei E K, Yeow J. Polymer nanocomposite-based shielding against diagnostic X-rays [J]. Journal of Applied Polymer Science, 2013, 127(6):4939-4946. [41] Malekzadeh R, Mehnati P, Sooteh M Y, et al. Influence of the size of nano and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology[J]. Radiological Physics and Technology, 2019, 12(3): 325-334. [42] Belgin E E, Aycik G A. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation [J]. Journal of Radioanalytical & Nuclear Chemistry, 2017, 311(3):1-9. [43] Oyar O, Klalolu A. How protective are the lead aprons we use against ionizing radiation? [J]. Diagnostic and Interventional Radiology (Ankara, Turkey), 2012, 18(2):147-152. [44] Cetin H, Yurt A, Yüksel S H. The absorption properties of lead-free garments for use in radiation protection[J]. Radiation Protection Dosimetry, 2017, 173(4): 345-350. |