辐射防护通讯 ›› 2025, Vol. 45 ›› Issue (6): 14-20.

• 综述 • 上一篇    下一篇

面向γ辐射屏蔽的图形处理器并行加速方法及点核积分框架研究

于辰悦1,2, 张洪健3, 张立国3   

  1. 1.东华理工大学核技术应用教育部工程研究中心,南昌 330013;
    2.东华理工大学核科学与工程学院,南昌 330013;
    3.清华大学核能与新能源技术研究院,北京 100084
  • 收稿日期:2024-11-12 发布日期:2026-01-15
  • 通讯作者: 张立国。E-mail:lgzhang@tsinghua.edu.cn
  • 作者简介:于辰悦(2000—),女,2023年毕业于东华理工大学核工程与核技术专业,现为东华理工大学核科学与技术专业在读硕士研究生。E-mail:yucy_ecut@126.com

GPU-accelerated methods for gamma-ray shielding and a point-kernel integration framework

YU Chenyue1,2, ZHANG Hongjian3, ZHANG Liguo3   

  1. 1. Engineering Research Center of Nuclear Technology, Ministry of Education East China University of Technology,Nanchang 330013;
    2. School of Nuclear Science and Engineering, East China University of Technology,Nanchang 330013;
    3. Institute of Nuclear and New Energy Technology, Tsinghua University,Beijing 100084
  • Received:2024-11-12 Published:2026-01-15

摘要: 面向γ辐射屏蔽计算对高精度与高吞吐的并行需求,系统梳理了图形处理器(GPU)并行加速技术的关键进展。围绕确定性方法与随机方法的核心计算环节,归纳GPU在蒙特卡罗输运、离散纵标法(SN)以及点核积分中的加速要点,并提出面向点核积分的GPU实现框架,涵盖任务粒度与线程映射、共享/常量/纹理内存协同、核函数重构以及主机—设备流水化与数据驻留策略。进一步综述CPU-GPU协同、三维辐射场实时仿真与可视化闭环,以及与深度学习的代理/降噪与物理约束融合等方向的代表性进展,分析负载不均衡、统一虚拟内存页迁移、非结构化几何访存与数值一致性验证等瓶颈问题。结果表明,GPU在厚屏蔽穿透、多次散射与体素化大场景中显著压缩计算时间,并支撑近实时的三维场重建与交互式评估。

关键词: γ辐射, GPU并行, 点核积分, 屏蔽计算

Abstract: This review synthesizes recent advances in GPU (Graphics Processing Unit)——based acceleration for gamma-ray shielding and dose computation. Focusing on the computational kernels of deterministic and stochastic approaches, acceleration strategies for Monte Carlo transport, discrete ordinates (SN), and point-kernel integration are summarized. Building on these insights, we formalize a GPU-oriented framework for point-kernel methods that covers task granularity and thread mapping, cooperative use of shared/constant/texture memories, kernel refactoring, and host & device pipelining with data residency. We further survey CPU-GPU co-processing, real-time 3D radiation-field simulation with visualization feedback, and learning-based surrogates/denoisers with physics-informed constraints, identifying practical bottlenecks including load imbalance, unified memory page migration, unstructured-geometry memory access, and verification/validation of numerical consistency. Evidence indicates that GPUs can markedly shorten time-to-solution for thick-shield penetration, multiple scattering, and large voxelization, enabling field reconstruction and interactive assessment in near real-time.

Key words: gamma radiation, GPU acceleration, point-kernel integration, shielding calculation

中图分类号: 

  • TL72