辐射防护通讯 ›› 2025, Vol. 45 ›› Issue (1): 1-9.
原寒1, 乔新燕1, 曹少飞1, 商照荣2
收稿日期:
2024-03-11
出版日期:
2025-02-20
发布日期:
2025-03-03
通讯作者:
曹少飞。E-mail:caoshaofei@126.com
作者简介:
原寒(1993—),女,助理研究员,主要从事放射生态学研究工作。E-mail:944718305@qq.com
基金资助:
YUAN Han1, QIAO Xinyan1, CAO Shaofei1, SHANG Zhaorong2
Received:
2024-03-11
Online:
2025-02-20
Published:
2025-03-03
摘要: 植物修复技术以其成本低廉和对环境的友好性,成为治理重金属和放射性核素污染的有效手段。在铀矿开采和冶炼过程中产生的226Ra是一种具有长半衰期的α核素,一旦释放到环境中,便可能通过食物链对人类健康构成潜在威胁。因此,研究226Ra在土壤-植物系统中的吸收和转运机制及其影响因素,对于开展226Ra污染土壤的植物修复工作至关重要。通过调研国内外关于镭的生物地球化学循环、镭从土壤到植物的吸收转运机制及其影响因素的研究,分析了镭污染土壤的植物修复策略及其可行性,提出了提升镭污染土壤植物修复效率的建议。
中图分类号:
原寒, 乔新燕, 曹少飞, 商照荣. 植物修复镭污染土壤的可行性初步分析[J]. 辐射防护通讯, 2025, 45(1): 1-9.
YUAN Han, QIAO Xinyan, CAO Shaofei, SHANG Zhaorong. Preliminary feasibility analysis of phytoremediation of radium contaminated soil[J]. RADIATION PROTECTION BULLETIN, 2025, 45(1): 1-9.
[1] 吴桂惠,周星火.铀矿冶尾矿、废石堆放场地的辐射防护[J].辐射防护通讯,2001,21(6):33-36. [2] Jha V N, Tripathi R M, Sethy N K, et al.Bioaccumulation of 226Ra by plants growing in fresh water ecosystem around the uranium industry at Jaduguda, India[J] Journal of Environmental Radioactivity, 2010,101(9): 717-722. [3] Simon S L, Ibrahim S A. Biological uptake of radium by terrestrial plants[M]//The Environmental Behaviour of Radium. Vienna, IAEA, 1990. [4] Frostick A, Bollhöfer A, Parry D, et al. Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem Land[J]. Journal of Environmental Radioactivity, 2008, 99(3): 468-482. [5] UNSCEAR. Sources, effects and risks of ionizing radiation[R]. United Nations Scientific Committee on the Effects of Atomic Radiation, 2008. [6] Vandenhove H, Olyslaegers G, Sanzharova N, et al. Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po[J]. Journal of Environmental Radioactivity, 2009,100(9):721-732. [7] Hazou E, Zorko B, Dzagli M M, et al. Transfer from soil to grass and statistical analysis of naturally occurring radionuclides in soil from phosphate mining and processing sites in Maritime Region of Togo[J]. Environmental Earth Sciences, 2021, 80(18):626. [8] Tome F V, Rodriguez M P B, Lozano J C.Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area[J].Journal of Environmental Radioactivity, 2003, 65(2):161-175. [9] Cengiz G B. Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey[J].Journal of Radioanalytical and Nuclear Chemistry, 2018, 319(1):83-89. [10] Chakraborty S R, Azim R, Rahman A K M R,et al.Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the chittagong city of Bangladesh[J].Journal of Physical Science, 2013, 24(1):95-113. [11] Blanco Rodríguez P, Vera Tomé F, Lozano J C, et al. Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area[J].Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2010, 68(6):1154-1159. [12] Soudek P, Petrová Š, Benešová D, et al. Study of soil-plant transfer of 226Ra under greenhouse conditions[J].Journal of Environmental Radioactivity, 2010, 101(101N6):446-450. [13] Černe M, Smodiš B, Štrok M. Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. ex Steud.) grown in the vicinity of the former uranium mine at Žirovski vrh[J].Nuclear Engineering and Design, 2011, 241(4):1282-1286. [14] Medley P, Bollhöfer A, Parry D, et al. Radium concentration factors in passionfruit (Passiflora foetida) from the Alligator Rivers Region, Northern Territory, Australia[J].Journal of Environmental Radioactivity, 2013, 126:137-146. [15] Hu N, DING D, LI G, et al. Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China[J].Journal of Environmental Radioactivity, 2014, 129:100-106. [16] Medley P, Bollhöfer A. Influence of group II metals on Radium-226 concentration ratios in the native green plum (Buchanania obovata) from the Alligator Rivers Region, Northern Territory, Australia[J].Journal of Environmental Radioactivity, 2016, 151(Pt 3):551-557. [17] YAN X, LUO X G. Uptake of uranium, thorium, radium and potassium by four kinds of dominant plants grown in uranium mill tailing soils from the southern part of China[J].Radioprotection, 2016, 51(2):141-144. [18] Ham G J, Wilkins B T, Ewers L W. 210Pb, 210Po, 226Ra, U and Th in arable crops and ovine liver: variations in concentrations in the United Kingdom and resultant doses[J].Radiation Protection Dosimetry, 2001, 93(2):151-159. [19] Karunakara N, Somashekarappa H M, Narayana Y, et al. 226Ra, 40K and 7Be activity concentrations in plants in the environment of Kaiga, India[J].Journal of Environmental Radioactivity, 2003, 65(3):255-266. [20] Pulhani V A, Dafauti S, Hedge A G, et al. Uptake and distribution of natural radioactivity in wheat plants from soil[J].Journal of Environmental Radioactivity, 2005, 79:331-346. [21] Popovic D, Todorovic D, Frontasyeva M, et al. Radionuclides and heavy metals in Borovac, Southern Serbia[J].Environmental Science and Pollution Research, 2008, 15(6): 509-520. [22] Uchida S, Tagami K. Soil-to-crop transfer factors of radium in Japanese agricultural fields[J].Journal of Nuclear & Radiochemical Sciences, 2007, 8(2):137-142. [23] da Conceição F T, Bonotto D M, Jiménez-Rueda J R, et al. Distribution of 226Ra, 232Th and 40K in soils and sugar cane crops at Corumbataí river basin, São Paulo State, Brazil[J].Applied Radiation & Isotopes, 2009, 67(6):1114-1120. [24] Lauria D C, Ribeiro F C A, Conti A A, et al. Radium and uranium levels in vegetables grown using different farming management systems[J].Journal of Environmental Radioactivity, 2009, 100(2):176-183. [25] Dragović S, Mihailović N, Gajić B. Quantification of transfer of 238U, 226Ra, 232Th, 40K and 137Cs in mosses of a semi-natural ecosystem[J].Journal of Environmental Radioactivity, 2010, 101(2):159-164. [26] James J P, Dileep B N, Ravi P M, et al. Soil to leaf transfer factor for the radionuclides 226Ra, 40K, 137Cs and 90Sr at Kaiga region, India[J].Journal of Environmental Radioactivity, 2011, 102(12):1070-1077. [27] Asaduzzaman K, Khandaker M U, Amin Y M, et al. Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia[J].Journal of Environmental Radioactivity, 2014, 135:120-127. [28] Al-Hamarneh I F, Alkhomashi N, Almasoud F I. Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia[J].Journal of Environmental Radioactivity, 2016, 160:1-7. [29] Popic J M, Oughton D H, Salbu B,et al.Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway[J].Environmental Science: Processes & Impacts, 2020, 22:350. [30] Gerzabek M H, Strebl F, Temmel B.Plant uptake of radionuclides in lysimeter experiments[J].Environmental Pollution, 1998, 99(1):93-103. [31] Bunzl K, Trautmannsheimer M.Transfer of 238U, 226Ra and 210Pb from slag-contaminated soils to vegetables under field conditions[J].Science of The Total Environment, 1999, 231(2-3):91-99. [32] Vandenhove H, Eyckmans T, Hees M V.Can barium and strontium be used as tracers for radium in soil-plant transfer studies?[J].Journal of Environmental Radioactivity, 2005, 81(2-3):255-267. [33] Vandenhove H, Van Hees M. Predicting radium availability and uptake from soil properties[J]. Chemosphere, 2007,69: 664-674. [34] Nezami S, Malakouti M J, Samani A B,et al.Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran[J].Journal of Environmental Radioactivity, 2016, 164:145-150. [35] Seneviratne M,Rajakaruna N, Rizwan M,et al. Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review [J].Environmental Geochemistry and Health, 2019, 41: 1813-1831. [36] LAI J L, DENG Z X, JI X H, et al. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato ( Ipomoea batatas L.)[J].Journal of Hazardous Materials, 2020,400: 123264. [37] Weis J S, Weis P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration[J].Environment International, 2004, 30(5):685-700. [38] Burchett M D. Cellular distribution of copper, lead andzinc in the grey mangrove, Avicennia marina (Forsk.) Vicrh[J]. Aquatic Botany, 2000, 68(1): 45-59. [39] Windham L, Weis I S, Weis P. Patterns and processes of mercury (Hg)release from leaves of two dominant salt marsh macrophytes, Phragmites australis and Spartina alterniflora[J].Estuaries, 2001, 24(6):787-795. [40] Girault F, Perrier F, Ourcival J M, et al. Substratum influences uptake of radium-226 by plants[J].Science of The Total Environment, 2020, 766:142655. [41] Soudek P. Pĕtrík P, Vágner M, et al. Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot[J].European Journal of Soil Biology, 2007, 43(4):251-261. [42] Asaduzzaman K, Khandaker M U, Amin Y M,et al.Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular malaysia for the estimation of ingestion dose to man[J].Annals of Nuclear Energy, 2015, 76(feb.):85-93. [43] Asaduzzaman K, Mannan F, Khandaker M U, et al. Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings[J]. PLoS ONE, 2015, 10(10): 140667. [44] Shanthi G, Thampi T K J, Allen G R G,et al. Transfer factor of the radionuclides in food crops from high-background radiation area of south west India[J]. Radiation Protection Dosimetry, 2012,149(3): 327-332. [45] Haque M, Ferdous M J. Transfer of natural radionuclides from soil to plants in Savar Dhaka[J]. Spanish Journal of Soil Science, 2017, 7(2): 133-145. [46] Abu Shayeb M, Alharbi T, Baloch M A,et al.Transfer factors for natural radioactivity into date palm pits[J].Journal of Environmental Radioactivity, 2017, 167:75-79. [47] Strok M, Smodis B.Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine[J].Nuclear Engineering & Design, 2013, 261:279-284. [48] dos Santos Júnior J A, Romilton D S A, Marques D N S J,et al. Radioactive disequilibrium and dynamic of natural radionuclides in soils in the State of Pernambuco-Brazil[J]. Radiation Protection Dosimetry, 2018, 182(4): 448-458. [49] Khandaker M U, Heffny N, Adillah B, et al. Elevated concentration of radioactive potassium in edible algae cultivated in Malaysian seas and estimation of ingestion dose to humans[J]. Algal Research, 2019, 38: 101386. [50] Khandaker M U, Shuaibu H K, Alklabi F A A, et al. Study of primordial 226Ra, 228Ra, and 40K concentrations in dietary palm dates and concomitant radiological risk[J]. Health Physics, 2019, 116(6): 789-798. [51] Khandaker M U, Uwatse O B, Khairi B S, et al. Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur[J]. Radiation Protection Dosimetry, 2019, 185(3): 343-350. [52] Mahmud J A, Siraz M M M, Alam M S, et al. A study into the long-overlooked carcinogenic radon in bottled water and deep well water in Dhaka, Bangladesh[J]. International Journal of Environmental Analytical Chemistry, 2023: 7166-7173. [53] Roy D, Siraz M M M, Dewan M J, et al. Assessment of terrestrial radionuclides in the sandy soil from Guliakhali beach area of Chattogram, Bangladesh[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(3):1299-1307. [54] Siraz M M M, Roy D, Dewan M J, et al. Vertical distributions of radionuclides along the tourist-attractive Marayon Tong Hill in the Bandarban district of Bangladesh[J].Environmental Monitoring and Assessment, 2023, 195(3): 1-16. [55] Tanha M, Riebe B, Ikeda-Ohno A, et al. Environmental radioactivity studies in Kabul and northern Afghanistan[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(3): 2425-2433. [56] Jananee B, Rajalakshmi A, Thangam V, et al. Natural radioactivity in soils of Elephant Hills, Tamilnadu, India[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3): 1261-1268. [57] Uosif M A M, Alrowaili Z A, Elsaman R, et al. Soil-soybean transfer factor of natural radionuclides in different soil textures and the assessment of committed effective dose[J]. Radiation Protection Dosimetry, 2020, 188(4): 529-535. [58] Koul B, Adlakha K.Bioremediation of radionuclides by plant-microbe system: current progress and challenges[M]. Woodhead Publishing Series,2021:303-320. [59] 程禹敏.受放射性核素 Sr 污染土壤的植物修复研究[D].上海:上海交通大学,2017. [60] Burger A, Lichtscheidl I. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes[J].Science of the Total Environment, 2019, 653:1458-1512. [61] 宋志东,唐永金.水体铯污染的生物效应与修复植物筛选[J].环境工程学报,2015,9(04):1856-1862. [62] REN C G, KONG C C, WANG S X,et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium[J].Chemosphere, 2018, 217: 773-779. [63] 张志强,陈迪云,宋刚, 等.放射性核素土壤-植物吸收与钍、镭富集植物的发现[J].环境科学,2011,32(04):1159-1163. [64] 王建龙,陈灿.野豌豆在修复放射性镭污染土壤中的应用:CN117816726A[P].2024-04-05. [65] 李建国,韩宝华,马炳辉,等. 放射性污染土壤植物修复的研究现状及可行性[C]//中国核学会.中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第5册(辐射防护分卷、核化工分卷).北京:中国原子能出版社,2013:6. [66] 沙银花.人工构建竹柳-雀稗-博落回群落强化修复铀污染土壤的机理研究[D].衡阳:南华大学,2019. [67] LIN L Y, YAN X L, LIAO X Y, et al. Arsenic accumulation inpanax notoginseng monoculture and intercropping with pteris vittata[J]. Water Air & Soil Pollution,2015,226(113):1-8. [68] 王兴伟, 刘子芳, 赵兵, 等. 混种黑麦草和三叶草对假繁缕铬、铜及镍积累的影响[J]. 环境科技, 2017,30(1):21-30. [69] Huang J W, Blaylock M J, Kapulnik Y, et al. Phytoremediation of uranium-contaminated coils: role of organic acids intriggerig uranium hyperaccumulation in plants[J]. Environmental Science & Technology,1998,32(13):2004-2008. [70] CHEN B D,ZHU Y G,SMITH F A.Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil[J].Chemosphere, 2006, 62(9): 1464-1473. [71] Rufyikiri G,Huysmans L,Wannijn J,et al.Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil [J].Environmental Pollution,2004, 130(3): 427-436. [72] 陈可.两种植物根际促生菌对博落回抗干旱及富集铀性能的增强作用研究[D].衡阳: 南华大学,2018. |
[1] | 王玮, 李鑫, 郑鑫, 李妍, 朱云龙, 高蓉. 内蒙古城市土壤放射性水平分析及外照射水平估算[J]. 辐射防护通讯, 2025, 45(1): 34-39. |
[2] | 张超, 乔新燕, 曹少飞. 铀污染土壤植物修复中种质资源筛选及技术改进研究进展[J]. 辐射防护通讯, 2025, 45(1): 10-18. |
[3] | 吕洪震, 谢凌涛, 刘扬, 李擎, 边宝丽, 陈士恒. 基于射气闪烁法精确测量水中镭-226[J]. 辐射防护通讯, 2023, 43(6): 25-30. |
[4] | 马婷婷, 阙泽胜. 基于不同调查尺度的城市土壤氡浓度背景值和异常阈值测算方法稳健性分析与应用[J]. 辐射防护通讯, 2023, 43(5): 29-34. |
[5] | 原寒, 乔新燕, 曹少飞. 铀污染土壤生物修复技术研究进展[J]. 辐射防护通讯, 2023, 43(1): 1-8. |
[6] | 沙连茂. 环境样品中镭分析的基本知识与实践经验[J]. 辐射防护通讯, 2016, 36(2): 1-16. |
[7] | 曹少飞, 李建国, 韩宝华, 马炳辉, 王慧娟, 王艾俊. 大面积低水平放射性污染土壤的植物修复研究现状[J]. 辐射防护通讯, 2016, 36(1): 18-22. |
[8] | 杨洁, 陈海龙, 李洋, 赵杨军, 廉冰, 王猛. 土壤中氚化水浓度估算[J]. 辐射防护通讯, 2015, 35(6): 37-39. |
[9] | 花正东, 洪韵, 眭光凯, 戴继伟. 土壤中光子致地表光子辐射剂量率转换系数的EGS模拟[J]. 辐射防护通讯, 2014, 34(3): 16-19. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 12
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|