[1] Skvortzov V G, Ivannikov A I, Eichhoff U. Assessment of individual accumulated irradiation doses using EPR spectroscopy of tooth enamel [J]. Molecular Structure, 1995,347(2):321-329. [2] Angela K, Oswaldo B, Mascarenhas Sérgio, et al. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim[J]. Plos One, 2018,13(2):e0192444. [3] 李虎侯, 尹刚, 潘宝林, 等. 固体释光剂量计[J]. 原子能科学技术, 2008,(07):669-672. [4] Bradshaw W W, Cadena D G, Crawford G W, et al. The Use of Alanine as a Solid Dosimeter[J]. Radiation Research, 1962,17(1):11-21. [5] 王风, 林敏, 崔莹, 等. 丙氨酸薄片剂量计的制备及性能研究[J]. 中国原子能科学研究院年报, 2009:282-283. [6] 林敏. 丙氨酸/ESR剂量体系的研究与建立[D]. 中国原子能科学研究院, 2001. [7] 王丽萍, 张灿, 赵雅琴, 等. 镁掺杂羟基磷灰石的制备及其对Cu2+的吸附性能研究[J]. 中国矿业大学学报, 2018, 47(6):1340-1347. [8] 朱庆霞, 吴建青. 碳酸根羟基磷灰石的制备技术及研究进展[J]. 中国陶瓷, 2005,41(6):6-10. [9] 刘克军. 含硅羟基磷灰石的制备和体外生物活性研究[D]. 扬州大学, 2013. [10] Alshemary A Z, Goh Y F, Akram M, et al. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite[J]. Materials Research Bulletin, 2013,48(6):2106-2110. [11] Alshemary A Z, Pazarceviren A E, Tezcaner A, et al. Mesoporous strontium doped nano sized sulphate hydroxyapatite as novel biomaterial for bone tissue applications[J].RSC Advances, 2016, 6(72):68058-68071. [12] Alshemary A Z, Pazarceviren E A, Dalgic A D, et al. Nanocrystalline Zn2+ and SO2-4 binary doped fluorohydroxyapatite: A novel biomaterial with enhanced osteoconductive and osteoinconductive properties[J]. Materials Science & Engineering C, 2019:109884. [13] 徐祥华.复合掺杂纳米羟基磷灰石的制备表征及其性能的研究[D]. 天津大学, 2016. [14] Padmanabhana S K, Balakrishnana A, Chub M C, et al. Sol-gel synthesis and characterization of hydroxyapatite nanorods[J].Particuology, 2009,7(6):466-470. [15] Boyer L, Carpena J, Lacou J L, Synthesis of phosphate-silicate apatites at atmospheric pressure[J]. Solid State Ionics,1997,95 (1-2) 121-129. [16] Tang X L, Xiao X F, Liu R F. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method[J]. Materials Letters, 2005, 59(29-30):3841-3846. [17] Gibson I R, Best S M, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite[J]. Journal of Biomedical Materials Research,1999,44(4):422-428. [18] Marchat D, Zymelka M, Coelho C, et al. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route[J]. Acta Biomaterialia. 2013,9(6):6992-7004. [19] Callens F J, Verbeeck R M H, Naessens D E, et al. Effect of carbonate content on the ESR spectrum near g=2 of carbonated calciumapatites synthesized from aqueous media.[J]. Calcified Tissue Intermational, 1989, 44(2):114-124. [20] Bacquet G, Truong V Q, Vignoles M, et al. ESR of CO-2 in X-irradiated tooth enamel and A-type carbonated apatite.[J]. Calcified Tissue International, 1981, 33(2):105-109. [21] Vorona I P, Baran N P, Ishchenko S S, et al. CO2- radicals in synthetic hydroxyapatite[J]. Physics of The Solid State, 2008, 50(10):1852-1856. [22] Vorona I P, Nosenko V V, Baran N P,et al. EPR study of radiation-induced defects in carbonate containing hydroxyapatite annealed at high temperature[J]. Radiation Measurements, 2016,87:49-55. [23] Schramm D U, Rossi A M. Electron spin resonance (ESR) studies of CO- 2 radicals in irradiated A and B-type carbonate-containing apatites[J].Applied Radiation and Isotopes,2000,52(5): 1085-1091. [24] Hajiloo N, Ziaie F, Mehtieva S I. Gamma-irradiated EPR response of nano-structure hydroxyapatite synthesised via hydrolysis method[J]. Radiation Protection Dosimetry, 2012, 148(4):487-491. [25] Jaroslaw S, Lukasz P, Jacek M, et al. EPR studies of radicals generated by γ-radiation in nanocrystalline hydroxyapatites prepared by dry milling[J]. Journal of Molecular Structure,2012,1022:61-67. [26] Ziaie F, Hajiloo N, Amraei R. Comparison of synthesized micro- and nanostructure hydroxyapatite for EPR dosimetry[J]. Bio Nano Science, 2012, 2(2):104-107. [27] Oliveira L C, Rossi A M, Baffa O. A comparative thermoluminescence and electron spin resonance study of synthetic carbonated A-type hydroxyapatite[J]. Applied Radiation and Isotopes,2012, 70(3):533-537. [28] Shafaei M, Ziaie F, Sardari D, et al. Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite[J]. Luminescence the Journal of Biological and Chemical Luminescence, 2016, 31(1):223-228. [29] Lu Y, Ma L, Guo J W, et al. Study of new practical ESR dosimeter based on carbonated hydroxyapatite and its dosimetric properties[J]. Plos One, 2018, 13(5):e0197953. [30] Pietak A M, Reid J W, Sayer M. Electron spin resonance in silicon substituted apatite and tricalcium phosphate[J]. Biomaterials, 2005, 26(18): 3819-3830. [31] 毕晓光,马蕾,郭俊旺,刘晔,纪云龙,耿爽,陈肖华,吴可.辐照后硅掺杂羟基磷灰石顺磁性变化及其剂量学性能初步研究[J].军事医学,2021,45(4):272-277. [32] Ziaie F, Moein N F, Shafaei M. Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy[J]. Kerntechnik, 2014, 79(6):500-503. [33] Zarinfar A, Shafaei M, Ziaie F. Synthesis, characterization and thermoluminescence properties of nano-structure gadolinium doped hydroxyapatite (HAP:Gd)[J]. Procedia Materials Ence, 2015, 11:293-298. [34] Mendoza-Anaya D, E. Flores-Díaz, G. Mondragón-Galicia, et al. The role of Eu on the thermoluminescence induced by gamma radiation in nano hydroxyapatite[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(18):1-8. DOI: 10.1007/s10854-018-9147-4. [35] Daneshvar H, Shafaei M, Manouchehri F, et al. The role of La, Eu, Gd, and Dy lanthanides on thermoluminescence characteristics of nano-hydroxyapatite induced by gamma radiation[J]. SN Applied Sciences, 2019,1(10):1146. |