[1] United Nations Scientific Committee on the Effect of Atomic Radiation(UNSCEAR). Sources and Effects of Ionising Radiation,UNSCEAR 1996 Report to the General Assembly,Fiftyfirst Session,Supplement No.46(A/51/46),annex:Effects of radiation on the environment[M].Vienna:United Nations,1996:20-40. [2] National Council on Radiation Protection and Measurement(NCRP).Effects of ionizing radiation on aquatic organisms,NCRP Reports No.109[M].Bethesda:NCRP,1991:39-60. [3] International Atomic Energy Agency(IAEA).Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards,IAEA Technical Report Series No.332[M].Vienna:IAEA,1992:1-6. [4] US Department of Energy(USDOE).A graded approach for evaluating radiation doses to aquatic and terrestrial biota.Final Technical Standard No.DOE-STD-1153-2002[M].Washington,D.C.:USDOE,2002:11-22. [5] 环境保护部,国家质量监督检验检疫总局.核动力厂环境辐射防护规定:GB 6249—2001[S].北京:中国环境科学出版社,2001:4. [6] United States Congress,2002.Federal water pollution control act(clean water art),316(a).[2016-08-08].http://www.epw.senate.gov/water.pdf. [7] 国家环境保护局.海水水质标准:GB 3097—1997[S].北京:中国标准出版社,1997. [8] 陈志东, 邓飞, 林清. 大亚湾核电站放射性液态流出物排放对周围海洋环境的影响[C]//全国放射性流出物和环境监测与评价研讨会论文汇编.2003. [9] 黄乃明,陈志东,宋海青,等. 大亚湾和岭澳核电站外围辐射环境监督性监测[J]. 辐射防护, 2004, 24(3-4): 191-205. [10] 邓飞, 林清, 王家玥,等. 大亚湾核电基地氚的排放及其环境影响[J]. 环境化学, 2016, 35(5):956-963. [11] 吉长余,张东果. 大亚湾核电站1994—2003年环境辐射监测结果与分析[J]. 辐射防护, 2004, 24(3-4): 173-190. [12] 吉长余. 马尾藻样品中放射性核素110mAg测量及探讨[J]. 辐射防护, 2002,22(2): 113-116. [13] 林清,邓飞,陈志东,等.大亚湾核电站周围海域海洋环境介质中110mAg含量[J]. 辐射防护通讯, 2002,22(3):38-40. [14] 唐文乔,潘自强,夏益华,等. 核电站放射性液态流出物对大亚湾海洋生物所致的辐射剂量率[J]. 科学通报, 1999,(17): 1846-1850. [15] 苏健,曾志,余雯,等. 大亚湾核电站周围海域水生生物人工放射性核素辐射剂量率的蒙特卡罗计算[J]. 台湾海峡, 2011, 30(3): 301-309. [16] 刘胜,黄晖,黄良民,等. 大亚湾核电站对海湾浮游植物群落的生态效应[J]. 海洋环境科学, 2006,(2): 9-12. [17] 郝彦菊,唐丹玲. 大亚湾浮游植物群落结构变化及其对水温上升的响应[J]. 生态环境学报, 2010, 19(8): 1794-1800. [18] 唐森铭,严岩,陈彬. 春夏季大亚湾核电厂温排水对海洋浮游植物群落结构的影响[J]. 应用海洋学学报, 2013, 32(3): 373-382. [19] 林昭进, 詹海刚. 大亚湾核电站温排水对邻近水域鱼卵,仔鱼的影响[J]. 热带海洋, 2000, 19(1):44-51. [20] 朱月龙,朱培忠,李贤良,等. 秦山核电厂运行十年的环境监测与评价[C]//全国放射性流出物和环境监测与评价研讨会论文汇编. 2003. [21] 谷韶中,朱月龙. 秦山核电基地辐射环境监测20年[J]. 辐射防护, 2013, 33(3): 129-138. [22] 梁梅燕,宋伟力,叶际达,等. 秦山核电基地外围环境动物性食物样品放射性水平监测[J]. 辐射防护通讯, 2007, 27(2): 28-33. [23] 王莉莉, 黄开颜, 周彦, 等. 秦山核电基地周围环境生物样品中锶~90放射性水平监测[C]//中国核学会辐射防护分会2012年学术年会. 2012. [24] 王春生,杨关铭,何德华,等. 秦山核电站邻近水域浮游动物的群落结构和年际变化[J]. 东海海洋, 1999,(1): 38-48. [25] 高爱根,杨俊毅,董永庭,等. 秦山核电站Ⅲ期工程邻近水域底栖生物生态研究[J]. 东海海洋, 1998,(3): 26-33. [26] 何德华,杨关铭,王正方,等. 秦山核电站运行后对邻近海域生态环境及其水质影响评价[J]. 海洋环境科学, 1999,(2): 53-58. [27] 陈悦,江志兵,寿鹿,等. 秦山核电站邻近海域网采浮游植物群落分布及其影响因素[J]. 海洋通报, 2018, 37(2): 149-157. [28] 蒋朝鹏, 徐兆礼, 陈佳杰. 秦山核电站温排水附近海域鱼类群落分布空间的差异[J]. 水产学报, 2018, 42(8):64-75. [29] Jefanova O, Mazeika J, Petrosius R, et al. The distribution of tritium in aquatic environments, Lithuania[J]. Journal of Environmental Radioactivity, 2017:S0265931X17307762. [30] Danutė Marčiulionienė. Migration peculiarities of technogenic radionuclides in the ecosystem of lake Drūkšiai under anthropogenic conditions in 1988—1998[J]. Acta Zoologica Lituanica, 2005, 15(2):136-140. [31] Danutė Marčiulionienė, Jonas Mažeika, Ričardas Paškauskas, et al. Specific patterns of 137Cs, 60Co, and 54Mn accumulation by macrophytes and bottom sediments[J]. Acta Zoologica Lituanica, 2014, 24(2):168-176. [32] Mazeika J, Marciulioniene D, Nedveckaite T, et al. The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning[J]. Journal of Environmental Radioactivity, 2016, 151:28-37. [33] Nedveckaite T, Filistovic V, Marciulioniene D, et al. Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem-Nuclear power plant cooling pond-Reference organisms[J]. Journal of Environmental Radioactivity, 2011, 102(8): 788-795. [34] Nedveckaite T, Filistovic V, Marciulioniene D, et al. Exposure of biota in the cooling pond of Ignalina NPP: hydrophytes[J]. Journal of Environmental Radioactivity, 2007, 97(2-3): 137-147. [35] Mariulionien D, Montvydien D, Kazlauskien N, et al. Changes in macrophytes and fish communities in the cooler of Ignalina nuclear power plant (1988—2008)[J]. Journal of Environmental Engineering and Landscape Management, 2011,19(1):21-33. [36] Egidijus Bernotas. Changes in Fish Biomass under Impact of a Thermal Effluent and Eutrophication in Lake Drūkšiai[J]. Acta Zoologica Lituanica, 2002, 12(3): 242-253. [37] Andrius Astrauskas, Bernotas Egidijus, Didrikas Tomas. The impacts of the Ignalina Nuclear Power Plant effluent on fishes in Lithuania[J]. Italian Journal of Zoology, 1998, 65(Sup1): 461-464. [38] Baeza A, Brogueira A M, Carreiro M C V, et al. Spatial and temporal evolution of the levels of tritium in the Tagus river in its passage through Caceres (Spain) and the Alentejo (Portugal)[J]. Water Research, 2001, 35(3):705-714. [39] Baeza A, Del Rio M, Miro C, et al. Radiological impact of the Almaraz Nuclear Power Plant (Spain) during 1986 to 1989 on the surrounding environment[J]. Journal of Radioanalytical and Nuclear Chemistry, 1991, 152(1): 175-188. [40] Baeza A, Del Río L M, García E, et al. Temporal evolution of the 3H levels in the surface waters around the Almaraz Nuclear Power Plant[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 219(1): 25-31. [41] Baeza A, E. García, Paniagua J M, et al. Study of the comparative dynamics of the incorporation of tissue free-water tritium (TFWT) in bulrushes (Typha latifolia) and carp (Cyprinus carpio) in the Almaraz nuclear power plant cooling reservoir[J]. J Environ Radioact, 2009, 100(3):209-214. [42] J.F.Lavado Contador. Adaptive Management, Monitoring, and the Ecological Sustainability of a Thermal-Polluted Water Ecosystem: A Case in Sw Spain[J]. Environmental Monitoring and Assessment, 2005, 104(1-3): 19-35. [43] Cabral H N. Does the Tagus estuary fish community reflect environmental changes[J]. Climate Research, 2001, 18:119-126. |