[1] 程娟, 李全伟. 放射性废树脂氧化分解处理技术[J]. 同位素, 2012,25(2):125. [2] 陈斌. 核电厂低中放废树脂处理工艺[J]. 辐射防护通讯, 2010,30(1):13. [3] 罗上庚. 废离子交换树脂的优化处理[J]. 核科学与工程, 2003,23(2):165. [4] 蹇兴超, 云桂春. 放射性废离子交换树脂的过氧化氢湿法催化氧化技术研究[J]. 辐射防护, 1995, 15(3):203. [5] Charman R G, Twissell M A. Wet Oxidation Mobile Pilot PlantDemonstration on Organic Radioactive Wastes[R]. Nuclear Science and Technology, EUR19064, 1999. [6] Miyamoto T, Motoyama M, Shibuya M. Development Of Wet-oxidation Treatment System For Fliter Backwash Sludge And Ion Exchange Resins[G].WM'03 Conference, 2003. [7] HYPERLINK. http://wmsym.org/archives/1988/v1/45.pdf[OL] [8] Brandau E, Chrubasik A, Arnd G, et al. Apparatus for Concentrating Salt-Containing Solutions with Microwave Energy[P]. US 6080977A, 2000. [9] White T L. Heat Transfer Enhanced Microwave Process for Stabilization of Liquid Radioactive Waste Slurry[R]. Final Report for CRADA ORNL-93-0190, 1995. [10] Andrew J, Boulder J, Robert D, et al. Swanson, Brighton, all of Colorado Microwave Heating Apparatus and Method[P]. United States Patent, 4940865, 1990. [11] Olaf Oldiges, Hans-ürgen Blenski. A New Small Drying Facility for Wet Radioactive Waste and Liquids[G]. WM'03 Conference, 2003. [12] Škanata D, Krošelj V, Jankoviĉ M. Krško NPP Radioactive WasteCharacteristics[R]. Nuclear Energy for Europe International Conference, 2007 [13] HYPERLINK. http://np.chinapower.com.cn/newsarticle/1018/new1018077.asp[OL] [14] 高超, 安鸿翔, 梁栋, 等. 桶内微波干燥废树脂可行性研究[J]. 干燥技术与设备, 2012, 10(3):20. [15] 周耀中. 放射性废离子交换树脂的水泥固化技术研究与机理探讨[D]. 北京: 清华大学, 2002. [16] HYPERLINK. http://es.linkedin.com/pub/enrique-benavides-ruiz/38/243/7b1[OL] [17] 李俊峰, 王建龙. 放射性废离子交换树脂的特种水泥固化技术进展[J].辐射防护, 2006, 26(2):107. [18] 杨丽莉, 李晓海, 徐卫. 冷坩埚玻璃固化技术及应用[J]. 辐射防护通讯, 2013, 33(3):37. [19] 顾忠茂. 核废物处理技术[M]. 北京: 化学工业出版社, 2001: 306. [20] 伍浩松. 法国与韩国联合开发玻璃固化厂[J]. 国外核新闻, 2006, (1). [21] 王培义, 周连泉, 马明燮. 多用途放射性废物焚烧系统工程实验装置设计及建立[J]. 辐射防护, 2002,2(6): 326. [22] IAEA. Predisposal Management of Organic Radioactive Waste[R].Technical Report Series No.427, IAEA, 2004. [23] 裴勇, 潘跃龙. 高整体容器在我国放射性废物管理中的应用分析[J]. 核动力工程, 2012, 33(3):125. [24] 朱军军. 三门核电厂固体废物处理模式[J]. 核电工程与技术, 2012, 25(1):6. [25] IAEA. Innovative Waste Treatment and Conditioning Technologies atNuclear Power Plants[R]. IAEA-TECDOC-1504, IAEA, 2006. [26] 马鸿文, 杨静. 矿物聚合材料:研究现状与发展前景[J]. 地学前缘, 2002, 9(4):397. [27] Womack R K. Using the Centrifugal Method for the Plasma-arc Vitrification of Waste[J]. Journal of Metals, 1999, 51(10):14. [28] Kaczmarsky M M. Application of the Quantum-CEP Technology to Utility Spent Ion Exchange Resin and mixed Waste[R]. Proctor International Confucian Incinerasion Thermidor Technology, 1998:631. [29] Ferris K, Katagiri G I. Radwaste Reduction Technology for Spent Resins[R]. Japan Atomic Energy Agency, 2011. [30] Tusa E. IVO's Resin-eating Bacteria Make Light Work of Waste Treatment[J]. Nuclear Engineering International, 1992, 37(451):39. |