RADIATION PROTECTION ›› 2022, Vol. 42 ›› Issue (1): 1-10.
Previous Articles Next Articles
YAN Xuewen, LI Hua, LI Deyuan, LI Hui, NIU Mengqing, QIAO Pei
Received:
2021-05-07
Online:
2022-01-20
Published:
2022-01-24
CLC Number:
YAN Xuewen, LI Hua, LI Deyuan, LI Hui, NIU Mengqing, QIAO Pei. Research status and prospects of microdose experimental measurement technology based on SOI[J].RADIATION PROTECTION, 2022, 42(1): 1-10.
[1] | 刘树铮. 医学放射生物学[M]. 北京: 原子能出版社, 1998: 44-58.LIU Shuzheng. Medical radiobiology[M]. Beijing: Atomic Energy Press, 1998: 44-58. |
[2] | B И依万诺夫,B H雷佐夫,著. 微剂量学基础[M]. 华明川, 译. 北京: 原子能出版社, 1987: 2-12.В·И ИBaHOB, В·H J1bIcцOB. Fundamentals of microdosimetry[M]. Translated by Hua Mingchuan. Beijing: Atomic Energy Press, 1987: 2-12. |
[3] | 张文仲,郭勇. 微剂量学的发展及其应用[J]. 辐射防护, 2004, 24(6): 388-398.ZHANG Wenzhong, GUO Yong. Development and application of mocrodosimetry[J]. Radiation Protection, 2004, 24(6): 388-398. |
[4] | Rossi H H, Zaider M. Microdosimetry and its applications[M]. London: Springer, 1996: 1-13. |
[5] | Michael Joiner,Albert van der Kogel. 临床放射生物学基础[M]. 王中敏, 译. 北京: 军事医学科学出版社, 2010: 13-19.Michael Joiner,Albert van der Kogel. Fundamentals of clinical radiobiology[M]. Translated by Wang Zhongmin. Beijing: Military Medical Science Press, 2010: 13-19. |
[6] | Zaider M, Rossi H H. On the application of microdosimetry to radiobiology[J]. Radiation Research,1988,113:15-24. |
[7] | 张文仲. 电离辐射粒子在人体组织中能量沉积的微剂量学研究[D]. 北京: 中国人民解放军军事医学科学院, 2003: 7-9.ZHANG Wenzhong. Microdosimetric study on energy deposition of ionizing radiation particles in human tissues[D]. Beijing: Academy of Military Medical Sciences, 2003: 7-9. |
[8] | 戴天缘. 基于微剂量学及纳剂量学的离子束相对生物学效应研究[D]. 兰州: 中国科学院近代物理研究所, 2020: 3-5.DAI Tianyuan. Research on the relative biological effectiveness of ion beams based on microdosimetry and nanodosimetry[D]. Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences, 2020: 3-5. |
[9] | 田志恒. 辐射剂量学[M]. 北京: 原子能出版社, 1992: 68-72.TIAN Zhiheng. Radiation dosimetry[M]. Beijing: Atomic Energy Press, 1992: 68-72. |
[10] | LEA D E. The inactivation of viruses by radiations[J]. British Journal of Radiology, 1946. DOI: 10.1259/0007-1285-19-221-205. |
[11] | Anatoly B Rosenfeld. Novel detectors for silicon based microdosimetry, their concepts and applications[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 809: 156-170. |
[12] | Agosteo S, Pola A. Silicon microdosimetry[J]. Radiation Protection Dosimetry. 2011,143(2-4):409-415. |
[13] | Rosenfeld A B, Bradley P D, Cornelius I, et al. A new silicon detector for microdosimetry applications in proton therapy[J]. IEEE Transactions on Nuclear Science,2000,47(4):1386. |
[14] | Bradley P D, Rosenfeld A B, Zaider M, et al. Solid state microdosimetry[J]. Nuclear Instrument and Methods in Physics Research B, 2001, 184(1-2): 135-157. |
[15] | Zoros E, Pappas E, Pantelis E. Evaluation of the accuracy of the electron transport algorithms of the MCNP6 and EGSnrc Monte Carlo codes using the Fano theorem[J]. Physica Medica, 2014(30): 75-121. |
[16] | 张伟华,王志强. 组织等效正比计数器的测量原理和方法[J]. 核标准计量与质量, 2008, 3: 45-54.ZHANG Weihua, WANG Zhiqiang. Measuring principle and method of tissue equivalent proportional counter[J]. He Biaozhun Jiliang and Zhiliang, 2008, 3: 45-54. |
[17] | 郑文忠,唐明华,李从裕,等. 用于微剂量测量的圆柱型无壁组织等效正比计数器[J]. 辐射防护, 1986,3(6):161-169.ZHENG Wenzhong, TANG Minghua, LI Congyu, et al. A cylinrical tissue-equivalent well-less proportional counter for microdosimetry[J]. Radiation Protection, 1986,3(6):161-169. |
[18] | 姜志刚. 球形组织等效正比计数器模拟及实验研究[D]. 绵阳: 中国工程物理研究院, 2015: 33-42.JIANG Zhigang. Simulation and experimental study of a spherical tissue equivalent proportional counter[D]. Mianyang: China Academy of Engineering Physics,2015: 33-42. |
[19] | Ellett W H, Braby L A. Measurement of event spectra for 250 kVp X-rays and cobalt-60 gamma rays using a grid-walled proportional counter[R].1972. |
[20] | Attix F H. Topics in radiation dosimetry. Topics in radiation dosimetry[D]. New York, 1972. |
[21] | 党秉荣,卫增泉,张树民,等. 用于微剂量学研究的无壁正比计数器系统[J]. 核电子学与探测技, 1998, 18(2): 98-100.DANG Bingrong, WEI Zengquan, ZHANG Shumin, et al. Using a cylindrical wall-less proportional counter system for studying microdosimetry[J]. Nuclear Electronics & Detection Technology, 1998, 18(2): 98-100. |
[22] | ZHU Min,GUO Ming,HONG Hao,et al. Measurement system design of micro-dose experimental spectrum[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020,34(12):2054031. DOI: 10.1142/S0218001420540312. |
[23] | Sauli F. GEM: a new concept for electron amplification in gas detectors[J]. Nuclear Instrument and Method A, 1997, 386: 531-534. |
[24] | Farahm M, Bos A J J, van Eijk C W E. Gas electrical multiplier (GEM) operation with tissue equivalent gases at various pressures[J]. Nuclear Instrument and Method in Physics Research, 2003, 506(1 & 2): 160-165. |
[25] | Farahmand M. A novel tissue-equivalent proportional counter based on a gas electrical multiplier[D]. Delft: Delft University of Technology, 2004:39-41. |
[26] | Wang Chris. Development and test of a GEM-based TEPC system for in-phantom dose measurements[D]. Atlanta: Georgia Institute of Technology, 2007:25-32. |
[27] | 李春娟, 张伟华, 肖雪夫, 等. GEM-TEPC 调研分析及原理研究[J]. 宇航计测技术, 2019, 39(1) : 22-26.LI Chunjuan, ZHANG Weihua, XIAO Xuefu, et al. Survey on GEM-TEPC and study on its principle[J]. Journal of Astronautic Metrology and Measurement,2019, 39(1) : 22-26. |
[28] | De Nardo L, Cesari V, Donà G, et al. Mini-TEPCs for radiation therapy[J]. Radiation Protection Dosimetry, 2004, 108(4) : 345-52. |
[29] | Contea V, Bianchia A, Selvaa A,et al. Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC[J]. Physica Medica, 2019,64:114-122.DOI.org/10.1016/j.ejmp.2019.06.011. |
[30] | Bradley P D, Rosenfeld A B, Lee K K, et al. Charge collection and radiation hardness of a SOI micro-dosimeter for medical and space applications[J]. IEEE Transactions on Nuclear Science, 1998,45(6):2700-2710. |
[31] | Bradley P D, Rosenfeld A, Allen B, et al. Performance of silicon microdosimetry detectors in boron neutron capture therapy[J]. Radiation Research, 1999, 151(3): 235-243. DOI:10.2307/3579934. |
[32] | Cornelius I M, Rosenfeld A B, Siegele R, et al. LET dependence of the charge collection efficiency of silicon microdosimeters[J]. IEEE Transactions on Nuclear Science, 2003, 50 (6): 2373-2379. DOI: 10.1109/tns.2003.820740. |
[33] | Nai Shyan Lai, Wee Han Lim, Amy L Ziebell, et al. Development and fabrication of cylindrical silicon-on-insulator microdosimeter arrays[J]. IEEE Transactions on Nuclear Science, 2009,56(3): 1637-1641. |
[34] | Ziebell A L, Cornelius I. Cylindrical silicon-on-insulator microdosimeter: Charge collection characteristics[C]//IEEE Nuclear Science Symposium Conference Record.2007. |
[35] | 唐杜, 刘书焕, 李永宏, 等. Si SOI微剂量探测器电荷收集特性数值模拟[J]. 2012, 10(5): 616-620.TANG Du, LIU Shuhuan, LI Yonghong, et al. Numerical simulation of charge collection characteristics of Si SOI microdosimeter[J]. 2012, 10(5): 616-620. |
[36] | Jayde Livingstone, Dale A Prokopovich, Michael L F Lerch, et al. Large area silicon microdosimeter for dosimetry in high LET space radiation fields: Charge collection study[J]. IEEE Transactions on Nuclear Science, 2012,59(6):3126-3132. |
[37] | Tran L T, L Chartier, Prolcopovich D A, et al. 3D bridge microdosimeter: charge collection study and application to RBE studies in 12C radiation therapy[J]. Journal and Proceedings of the Royal Society of New South Wales, 2015,148(455 & 456):44-51. |
[38] | Tran L T, Susanna Guatelli, Dale A Prolcopovich, et al. A novel silicon microdosimeter using 3D sensitive volumes: modeling the response in neutron fields typical of aviation[J]. IEEE Transactions on Nuclear Science, 2014,61(4):1552-1557. |
[39] | Peter D Bradley, Anatoly B Rosenfeld, Barry Allen, et al. Performance of silicon microdosimetry detectors in boron neutron capture therapy[J]. Radiation Research, 1999, 151(3): 235-243. |
[40] | Reinhard M I, Cornelius I, Prokopovich D A, et al. Response of a SOI Microdosimeter to a/sup 238/ PuBe neutron source[C]. University of Wollonggong Research Online, 2005.DOI:10.1109/NSSMIC.2005.1596209. |
[41] | 雷鸣, 刘书焕, 宗鹏飞, 等. SOI 硅微剂量探测器对中子和伽马辐射场线能谱测量的GEANT4模拟研究[J]. 辐射防护, 2017, 37(3): 169-173.LEI Ming, LIU Shuhuan, ZONG Pengfei, et al. GEANT4 simulation of silicon-on-insulator microdosimeter for monitoring lineal spectra of neutron and gamma mixed field[J]. Radiation Protection, 2017, 37(3): 169-173. |
[42] | Hu N, Uchida R, Tran L T, et al. Feasibility study on the use of 3D Silicon Microdosimeter detectors for microdosimetric analysis in Boron Neutron Capture Therapy[J]. Applied Radiation and Isotopes,2018,06:022.DOI.org/10.1016/j.apradiso. |
[43] | Peter D Bradley. The development of a novel silicon microdosimeter for LET radiation therapy[D]. Doctor of Philosophy thesis, Department of Engineering Physical, University of Wollongong, 2000: 281-299. |
[44] | Wroe A, Rosenfeld A, Reinhard M, et al. Solid state microdosimetry with heavy ions for space applications[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2264-2271. |
[45] | Chartier L, Tran L T, Bolst D, et al. Microdosimetric applications in proton and heavy ion therapy using silicon microdosimeters[J]. Radiation Protection Dosimetry,2018, (1 & 4):365-371.DOI:10.1093/rpd/ncx226. |
[46] | Lee S H, Mizushima1 K, Sakata D, et al. Microdosimetric study for helium-ion beam using fully 3D silicon microdosimeters[J]. Journal of Physics: Conference Series, 2020:1662. DOI:10.1088/1742-6596/1662/1/012022. |
[47] | Bradley P D, Rosenfeld A B. Tissue equivalence correction for silicon microdosimetry detectors in boron neutron capture therapy[J]. Med Phys,1998,25(11):2220. |
[48] | Guatelli S, Reinhard M I, Mascialino B, et al. Tissue equivalence correction in silicon microdosimetry for protons characteristic of the LEO space environment[J]. IEEE Transactions on Nuclear Science,2008,55(6):3407-3413. |
[49] | David Bolst, Susanna Guatelli, Linh T Tran, et al. Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy[J].Physics in Medicine & Biology, 2017,62(6):2055-2069. |
[50] | 孙越强, 朱光武, 王世金,等. 空间微剂量测量技术[C]//中国空间科学学会空间探测专业委员会第十五次学术会议论文集. 2002: 230-235.SUN Yueqiang, ZHU Guangwu, WANG Shijin, et al. Space microdose measurement technology[C]//Proceedings of the 15th academic conference of the space exploration Committee of the Chinese society of Space Sciences. 2002: 230-235. |
[51] | Linh T Tran, Lachlan Chartier, Dale A Prokopovich, et al. 3D-Mesa “Bridge” silicon microdosimeter: Charge collection study and application to RBE studies in 12C radiation therapy[J]. IEEE Transacyions on Nuclear Science,2015,62(2): 504-511. |
[52] | Agosteo S, Fazzi A, Introini M V, et al. Study of a silicon microdosimeter for radiation quality assessment in hadron therapy fields[C]//IEEE Nuclear Science Symposium conference record Nuclear Science Symposium.January 2013. |
[53] | Sarah E Andersona, Keith M Furutani, Linh T Tran, et al. Microdosimetric measurements of a clinical proton beam with micrometersized solid-state detector[J]. Med Phys, 2017, 44 (11): 6029-6037. |
[54] | Bolst D, Guatelli S, Tran L, et al. Optimisation of the design of SOI microdosimeters for hadron therapy quality assurance[J]. Physics in Medicine & Biology,2018,63:215007. |
[1] | SUN Mingyan, ZHANG Weihua, TONG Teng, LI Daowu, ZHANG Yi, HUANG Xianchao, LV Ning. Development and preliminary test of a novel plane-parallel ionization chamber [J]. RADIATION PROTECTION, 2022, 42(1): 71-78. |
[2] | WANG Ruijun, BAO Li, LI Pengxiang, LI Zhou, SONG Qinnan. Proficiency testing in the field of radioactive measurement [J]. RADIATION PROTECTION, 2021, 41(S1): 36-39. |
[3] | LI Yin, WEI Yingjing, CHEN Shuangqiang, FANG Dengfu, CUI Wei, FENG Mei. Establishment of X-ray air kerma (diagnostic level) standard device [J]. RADIATION PROTECTION, 2021, 41(S1): 133-138. |
[4] | CHEN Shuangqiang, WEI Yingjing, LI Yin, FANG Dengfu, TANG Zhihui, YANG Bo. Establishment of X-ray air kerma (radiotherapy level) standard device [J]. RADIATION PROTECTION, 2021, 41(S1): 139-144. |
[5] | LI Weiming, WEI Yingjing, LI Yin, CHEN Shuangqiang, WANG Mingliang, HAO Shidong. Establishment of γ-ray air kerma (radiotheraph lever) standard device [J]. RADIATION PROTECTION, 2021, 41(S1): 145-150. |
[6] | XU Yang, LIN Min, GAO Fei, NI Ning, ZHANG Xi. Optimization design of portable X-ray irradiation device for on-site calibration and study of its radiation characteristics [J]. RADIATION PROTECTION, 2021, 41(2): 97-104. |
[7] | ZHANG Hui, YANG Yonggang, MA Yan, DAI Xiongxin. Comparison of TDCR liquid scintillation analysis counters Hidex 300SL and SIM-MAX LSA3000 in the measurement of β-nuclides [J]. RADIATION PROTECTION, 2021, 41(2): 105-111. |
[8] | SHEN Fu. On line continuous liquid radioactive effluent monitoring [J]. RADIATION PROTECTION, 2020, 40(6): 533-539. |
[9] | JIN Tao, SUN Yu, ZHANG Zhipeng, WU Yao, SONG Jigao, LI Junjie, LUO Yuanpan, PEI Min, ZENG Bo. Study on reducing the low detection limit of net count rate by low backgroundα, β measurement instrument from theoretical point of view [J]. RADIATION PROTECTION, 2020, 40(6): 550-555. |
[10] | ZHANG Jing, HOU Lei, RAO Xianming, LIU Jinjin, DU Xiangyang, ZHANG Jia, QIAO Minjuan. The performance analysis of large area portablesurface contamination survey meter [J]. RADIATION PROTECTION, 2020, 40(6): 556-560. |
[11] | QIAO Li, RAO Xianming, DU Xiangyang, REN Yi, ZHANG Jia, GUO Xirong, WANG Yanfei. Main performance test of large area gas-sealed proportional counter [J]. RADIATION PROTECTION, 2020, 40(6): 561-564. |
[12] | MENG Dan, MA Tao, LI Jianwei, ZHANG Fuguo, CHANG Xiang, YANG Yi, YANG Liu, MA Yinghao. Discussion on short-lived radionuclide aerosol monitoring [J]. RADIATION PROTECTION, 2020, 40(6): 565-570. |
[13] | MENG Dan, YANG Liu, MA Yinghao, CHANG Xiang, MA Tao, ZHANG Fuguo, YANG Yi, SHANG Jie. Development of an on-line continuous aerosol monitorsuitable for high radon environment [J]. RADIATION PROTECTION, 2020, 40(6): 571-576. |
[14] | LIU Qingyun, MA Guoxue, HU Xiang. Measurement of water sample based on anti-cosmic ray γ spectrometer [J]. RADIATION PROTECTION, 2020, 40(5): 408-413. |
[15] | GAO Zhengming, ZHAO Juan, LI Suruo. Investigation on the vulnerability of security monitoring systems for radioactive stockpiles based on radiation detection system [J]. RADIATION PROTECTION, 2020, 40(5): 419-426. |
|