RADIATION PROTECTION ›› 2016, Vol. 36 ›› Issue (5): 307-316.
Previous Articles Next Articles
Liu Hongyan, Yang Zhongtian, Zuo Yahui
Received:
2015-06-23
Online:
2016-09-20
Published:
2021-11-15
CLC Number:
Liu Hongyan, Yang Zhongtian, Zuo Yahui. The effects of microorganisms on HLW-geodisposal scenarios[J].RADIATION PROTECTION, 2016, 36(5): 307-316.
[1] 国家发展改革委. 国家核电发展专题规划(2005—2020年)[R]. 北京:国家发展改革委, 2007. [2] 潘自强, 钱七虎. 高放废物地质处置战略研究[M]. 北京: 原子能出版社, 2009. [3] King F, Humphreys P. Metcalfe R. A review of the information available to assess the risk of microbiologically influenced corrosion in waste packages ( QRS-1384L-1) [R]. 2010. [4] 王驹. 中国高放废物地质处置十年进展[M]. 北京: 核工业北京地质研究院, 2004. [5] Henry LE, Dianne KN. Geomicrobiology (fifth edition) [M]. CRC: Tayer & Francis Group, 2009. [6] Fumes H, Standigel H. Biological mediation in ocean crust alteration: How deep is the deep biosphere[J]. Earth Planet Sci Lett, 1999, 166: 97-103. [7] 李光玉,王远亮,董海良,等. 岩石中微生物学研究的分子生物学技术——中国大陆科学钻探(CCSD)微生物研究[J]. 岩石学报, 2006, 22(7): 2 107-2 110. [8] Fredrickson JK, Zachara JM, Balkwill DL,et al. Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State[J]. Appl Environ Microbiol, 2004, 70: 4 230-4 241. [9] Sarró MI, García AM, Moreno DA. Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water[J]. Int Microbiol, 2005, 8(3): 223-230. [10] Radeva G, Selenska-Pobell S. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals[J]. Can J Microbiol, 2005, 51(11):910-23. [11] Pedersen K. The microbe project achievements of a 10-year research programme [R]. R-13-49. Microbial Analytics Sweden AB, 2013. [12] Joanne M, Horn and Annemarie M. Microbial activity at Yucca Mountain[R]. UCRL-ID-122256. Yucca Mountain Site Characterization Project, 1995. [13] Pedersen K, Arlinger J, Edlund J, et al. Microbiology of Olkiluoto and ONKALO groundwater[R]. Microbial Analytics Sweden AB, 2010. [14] Katinka W, Hugo M, Patrick B, et al. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water[J]. Fems Microbiology Ecology, 2013, 86(3): 458- 473. [15] Hallbeck L and Pedersen K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield[J]. Applied Geochemistry, 2008, 23: 1796-1819. [16] Kwon MJ, Yang JS, Lee S, et al. Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au-Ag mine tailings[J]. J Hazard Mate, 2015, 296: 147-157. [17] Pedersen K. Summary report microbiology of Olkiluoto and ONKALO groundwater[R]. Microbial Analytics Sweden AB, 2012. [18] Pedersen K. Analysis of copper corrosion in compacted bentonite clay as a function of clay density and growth conditions for sulfate-reducing bacteria[J]. Journal of Applied Microbiology, 2010, 108: 1 094- 1 104. [19] Pedersen K, Arlinger J, Hallbeck A, et al. Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4 to 450 m in Olkiluoto, Finland[J]. The ISME Journal, 2008b, 2: 760-775. [20] Kyle JE, Eydal HSC, Ferris FG, et al. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden[J]. The ISME Journal, 2008, 2: 517-574. [21] Bergelin A, Pedersen K, Wallin B. Investigation of sulphide in core drilled drillholes KLX06, KAS03 and KAS09 at Laxemar and Äspö. Chemical-, microbiological- and dissolved gas data from groundwater in four drillhole sections[R]. Svensk Kärnbränslehantering AB: Stockholm, 2010. [22] Small J, Nykyri M, Helin M, et al. Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste[J]. Applied Geochemistry, 2008, 23:1 383-1 418. [23] Pedersen K. Subterranean microbial populations metabolize hydrogen and acetate under in situ conditions in granitic groundwater at 450 m depth in the Äspö Hard Rock Laboratory, Sweden[J]. FEMS Microbiology Ecology, 2012a, 81:217-229. [24] Hallbeck L, Pedersen K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield[J]. Applied Geochemistry, 2008, 23: 1 796-1 819. [25] Wikieł AJ, Datsenko I, Vera M, et al. Impact of desulfovibrioalaskensis biofilms on corrosion behaviour of carbon steel in marine environment[J]. Bioelectrochemistry, 2014, 97: 52-60. [26] Lewandowski Z, Beyenal H. Mechanisms of microbially influenced corrosion[M]. Biofilms, Springer-Verlag, Berlin, 2008:35-63. [27] Gras JM. Life prediction for HLW containers-issues related to long-term extrapolation of corrosion resistance[J]. Physique, 2002, 3: 891-902. [28] Zhang P, Xu D, Li Y, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015. 101:14-21. [29] 蒋波,杜翠微,李晓刚,等. 典型微生物腐蚀的研究进展[J]. 石油化工腐蚀与防护, 2008, 25(4):1-4. [30] Bhat S, Sharma K, Thomas S, et al. 8-in pipeline from group gathering station to Central Tank Farm[J]. Mater Performance, 2011, 50:50-53. [31] Kan J, Chellamuthu P, Obraztsova A. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV)[J]. J Appl Microbiol, 2011, 111(2): 329-37. [32] Smailos E. Influence of welding and heat treatment on corrosion of a high-level waste container material carbon steel in disposal salt brines[J]. Corrosion, 2000, 56(10): 1 071-1 074. [33] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem[J]. Appl Environ Microbiol, 2014, 80(4): 1 226-1 236. [34] 周凤英, 王美雅, 钟晓萍, 等. 不同硫杆菌菌株对放射性废物桶材腐蚀剂腐蚀物迁移之效应[J]. 防腐工程, 1997, 1: 1-11. [35] 王丽超. 高放废物处置材料对环境优势微生物生长的影响[D]. 绵阳: 西南科技大学, 2011. [36] Nuclear Energy Agency(NEA). Features, events and processes (FEPs) for geologic disposal of radioactive waste: an international database[M]. Organization for Economic Co-operation and Development (OECD), 2000. [37] 朱绒霞. 钢筋混凝土微生物腐蚀[J]. 装备环境工程, 2010, 7(1): 50-52. [38] 赵玉连, 代群威, 董发勤, 等. 短小芽孢杆菌-蒙脱石相互作用实验研究[J]. 岩石矿物学杂志, 2015, 34(6):939- 944. [39] Dai QW, Zbao YL, Dong FQ, et a1. Interaction between bentonite and Bacillus litoralis strain SWU9[J]. Applied Clay Science, 2014. 100: 88-94. [40] 成徐州, 云桂春. 微生物作用下放射性废物水泥固化体的长期稳定性测试程序[J]. 辐射防护, 2010, 30(1): 30-35. [41] Rogers RD, Knight TJ, Cheeseman CR, et al. Development of test methods for assessing microbial influenced degradation of cement-solidified radioactive and industry wastes[J]. Cement and Concrete Research, 2003, 33(12): 2 076- 2 096. [42] Lian B, Wang B, Mu P, et al. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus[J].Geochimica et Cosmochimica Acta, 2008,72(1):87-98. [43] 曹维政, 朱云, 鲁安怀, 等. 两株异化铁还原菌与蒙脱石交互作用实验研究[J]. 矿物岩石地球化学通报, 2011, 30(3): 311-316. [44] 陈骏,姚素平,季俊峰,等. 微生物地球化学及其研究进展[J]. 地质评论, 2004, 50(6):620-632. [45] Cardenas E, Wu WM, Leigh MB, et al. Microbial communities in contaminated sediments associated with bioremediation of uranium Submicromolar levels[J]. Applied and Environmental Microbiology, 2008, 74(12): 3 718-3 729. [46] Moll H, Lütke L, Barkleit A, et al. Curium (III) speciation studies with cells of a groundwater strain of Pseudomonas fluorescens[J]. Geomicrobiol J, 2013b, 30: 337-346. [47] Moll H, Lütke L, Cherkouk A. Bacterial diversity in clay and actinide interactions with bacterial isolates in relation to nuclear waste disposal[J]. Radionuclides in the Environment, 2015, 209-229. [48] Fein JB, Daughney CJ, Yee N, et al. A chemical equllibrium model for metal adsorption onto bacterial surfaces[J]. Geochimicaet Cosmochimica Acta, 1997, 61: 3 319-3 328. [49] Fujita Y,Ferris FG,Lawson RD,et al. Calcium carbonate recipitation by Ureolytic Subsurface Bacteria[J]. Geomicrobiology Journal, 2000, 17: 305-318. [50] Nathan Y, Jeremy BF. Quantifying metal adsorption onto bacteria mixtures: a test and application of the surface complexation model[J]. Geomicrobiology Journal, 2003, 20(1): 43-61. [51] Salvage KM, Yeh GT. Development and application of a Numerical model of kinetic and equilibrium microbiological and Geochemical reactions (B10KEMOD)[J]. Journal of Hydrology, 1998, 209: 27-52. [52] Thorne MC. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste [J]. J Radiol Prot, 2012, 32: 175-180. [53] 王青海, 刘艳, 司高华, 等. 高放废物包装容器材料腐蚀研究进展[J]. 腐蚀与防护. 2011, 32(1):40-44. [54] Darren MJ, Thomas FE, Joanne H. Microbial Impacts to the Near-Field Environment Geochemistry: a model for estimating microbial communities in repository drifts at Yucca Mountain[J]. Journal of Contaminant Hydrology, 2003, 62: 553- 575. [55] Xu D, Huang W, Ruschau G, et al. Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking[J]. Engineering Failure Analysis, 2013, 28:149-159. [56] Masurat P, Eriksson S, Pedersen K. Microbial sulphide production in compacted Wyoming bentonite MX-80 under in situ conditions relevant to a repository for high-level radioactive waste[J]. Applied Clay Science, 2010, 47: 58-64. |
[1] | GUO Hang, JIN Weiyang. Practice and improvement of source term control in a PWR nuclear power plant [J]. RADIATION PROTECTION, 2021, 41(3): 248-253. |
[2] | GAO Junyi. Three-dimensional numerical analysis of the interaction between fracture water flow, heat transfer and distance between disposal pits in the near field of high-level radioactive waste repository [J]. RADIATION PROTECTION, 2020, 40(3): 231-238. |
[3] | LING Hui, WANG Ju, LIU Yuemiao, GAO Yufeng, CHEN Weiming, TONG Qiang. Sensitivity analysis of near-field radionuclide release rate for buffer material parameters [J]. RADIATION PROTECTION, 2019, 39(5): 403-409. |
[4] | ZHANG Liying, LI Xiaojing, ZENG Jinzhong, JIN Weiyang, MAO Yawei, MI Aijun. Assessment of deposit source term of activated corrosionproducts for HPR1000 nuclear power plants [J]. RADIATION PROTECTION, 2019, 39(3): 192-197. |
[5] | CHEN Shiwan, WANG Guibin, YANG Chunhe, WANG Yong, SHI Wenbing. Key issues and research progress of excavation damagezone in surrounding rocks of high-levelradioactive waste disposal repositories [J]. RADIATION PROTECTION, 2019, 39(2): 137-149. |
[6] | LIU Wei, LIANG Dong, YANG Zhongtian, MAO Haijun, LI Honghui, JIA Meilan, ZHAO Shuaiwei, MAO Liang. Experimental study on influence of montmorillonite content on expansion behavior of bentonite [J]. RADIATION PROTECTION, 2018, 38(6): 511-515. |
[7] | LING Hui, WANG Ju, CHEN Weiming, CHEN Liang. Progress on the safety case for geological disposal of high level radioactive waste [J]. RADIATION PROTECTION, 2018, 38(2): 101-109. |
[8] | WANG Peng, HUANG Shutao, WANG Ju, ZHAO Yongan, WU Lun, CAI Heng, GAO Min, WANG Hongbin, WANG Shuhong, LIU Yuanlin. Structure and function design of geo-information database for high-level radioactive waste disposal in China [J]. RADIATION PROTECTION, 2018, 38(1): 71-79. |
[9] | Liu Yi, Chen Yan, Kong Yanrong, Li Ruizhi, Nie Peng, Zhou Yidong. A study on decontamination technology of ultrasonic wave cerium(Ⅳ) [J]. RADIATION PROTECTION, 2017, 37(1): 39-44. |
[10] | Ni Youyi, Bu Wenting, Dong Wei, Guo Qiuju, Yang Bin, Quan Wei, Meng Ruijie. Study on the migration of Pu in soil [J]. RADIATION PROTECTION, 2017, 37(1): 1-7. |
[11] | Guo Hui, Kang Mingliang, Chen Wanliang, Long Junchen, Zhao Zhun. Speciation and solubility of americium in Beishan groundwater [J]. RADIATION PROTECTION, 2016, 36(1): 40-46. |
[12] | Li Honghui, Li Peng, Cui Zengqi, Wan Yaping, Jia Meilan, Liu Jianqin, Zhao Shuaiwei, Mao Liang, Liu Wei. Mechanism analysis and calculation of vitrified HLW dissolution due to ground water erosion in the process of geological disposal [J]. RADIATION PROTECTION, 2016, 36(1): 7-13. |
|