[1] Marble W J.BWR radiation assessment and control program: Assessment and control of BWR radiation fields, Volume 2 [R].EPRI Report NP-3114.1983. [2] Marble W J.BWR radiation field control using zinc injection passivation [R].EPRI Report NP-4474. 1986. [3] Gold R E, Kormuth J W, Bergmann C A, et al. Evaluation of zinc addition to primary coolant of Farley-2 PWRs: Fuel Cladding Corrosion[R]. TR-106358-V2. EPRI, Palo Alto, CA, 1996. [4] Bushart S. PWR operating experience with zinc addition and the impact on plant radiation fields[R]. EPRI, Palo Alto, CA, 2003.1003389. [5] Roumiguière F. Field experience on Zn injection on PWR plants with a view to dose rate reduction[C]//International Conference of Nuclear Energy for New Europe 2005 Bled. Slovenia, September 5-8, 2005. [6] Stellwag B, Juergensen M, Wolter D. Zinc injection in German PWR Plants[C]//SFEN CHIMIE 2002, Water Chemistry in Nuclear Reactor Systems. Avignon-France, 22-26, April 2002:93. [7] 王凤军,刘红英,彭彦龙.压水堆核电厂一回路水化学控制[J].硅谷,2011, 12(2): 35-36. WANG Fengjun, LIU Hongying,PENG Yanlong. Water chemistry control in the first circuit of a pressurized water reactor nuclear power plant[J]. SilicomValley,2011, 12(2): 35-36. [8] Terachi T, Fuji K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 ℃[J]. J Nucl Sci Technol, 2003, 42(2): 225-232. [9] 王旭.三门核电厂高压加氢系统改进[J].核动力工程,2017,38(01):82-84. WANG Xu.Improment of high pressure hydrogen injection system in Sanmen nuclear power plant[J]. Nuclear Power Engineering, 2017,38 (01):82-84. [10] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water[J]. Corrosion Science, 1998, 40(3):337-370. |