[1] Fernandez I E, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis[J]. Lancet, 2012, 380(9842):680-688. [2] Hashimoto S, Gon Y, Takeshita I, et al. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway[J]. Am J Respir Crit Care Med, 2001, 163(1):152-157. [3] Strieter R M. What differentiates normal lung repair and fibrosis? Inflammation, resolution of repair, and fibrosis[J]. Proc Am Thorac Soc, 2008, 5(3):305-310. [4] LI X, XU G, QIAO T, et al. Effects of CpG Oligodeoxynucleotide 1826 on transforming growth factor-beta 1 and radiation-induced pulmonary fibrosis in mice[J]. J Inflamm (Lond), 2016, 13:16. [5] Delaney K, Kasprzycka P, Ciemerych M A, et al. The role of TGF-beta1 during skeletal muscle regeneration[J]. Cell Biol Int, 2017, 41(7):706-715. [6] Fujio K, Komai T, Inoue M, et al. Revisiting the regulatory roles of the TGF-beta family of cytokines[J]. Autoimmun Rev, 2016, 15(9):917-922. [7] Arno A I, Gauglitz G G, Barret J P, et al. New molecular medicine-based scar management strategies[J]. Burns, 2014, 40(4):539-551. [8] Paun A, Kunwar A, Haston C K. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice[J]. Radiat Oncol, 2015, 10:45. [9] Ahamed J, Laurence J. Role of platelet-derived transforming growth factor-beta1 and reactive oxygen species in radiation-induced organ fibrosis[J]. Antioxid Redox Signal, 2017, 27(13):977-988. [10] HAN G, ZHANG H, XIE C H, et al. Th2-like immune response in radiation-induced lung fibrosis[J]. Oncol Rep, 2011, 26(2):383-388. [11] Weaver C T, Elson C O, Fouser L A, et al. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin[J]. Annu Rev Pathol, 2013, 8:477-512. [12] Kim J S, Han N K, Kim S H, et al. Silibinin attenuates radiation-induced intestinal fibrosis and reverses epithelial-to-mesenchymal transition[J]. Oncotarget, 2017, 8(41):69 386-69 397. [13] FANG X M, HU C H, HU X Y, et al. An appreciation for the rabbit ladderlike modeling of radiation-induced lung injury with high-energy X-ray[J]. Chin Med J (Engl), 2015, 128(12):1 636-1 642. [14] Hinz B. Myofibroblasts[J]. Exp Eye Res, 2016, 142:56-70. [15] Graves P R, Siddiqui F, Anscher M S, et al. Radiation pulmonary toxicity: from mechanisms to management[J]. Semin Radiat Oncol, 2010, 20(3):201-207. [16] LI H, Hicks J J, WANG L, et al. Customized platelet-rich plasma with transforming growth factor beta1 neutralization antibody to reduce fibrosis in skeletal muscle[J]. Biomaterials, 2016, 87:147-156. [17] Giridhar P, Mallick S, Rath G K, et al. Radiation induced lung injury: prediction, assessment and management[J]. Asian Pac J Cancer Prev, 2015, 16(7):2 613-2 617. [18] Straub J M, New J, Hamilton C D, et al. Radiation-induced fibrosis: mechanisms and implications for therapy[J]. J Cancer Res Clin Oncol, 2015, 141(11):1 985-1 994. [19] Lee C M, Park J W, Cho W K, et al. Modifiers of TGF-beta1 effector function as novel therapeutic targets of pulmonary fibrosis[J]. Korean J Intern Med, 2014, 29(3):281-290. [20] Sohn S H, Lee J M, Park S, et al. The inflammasome accelerates radiation-induced lung inflammation and fibrosis in mice[J]. Environ Toxicol Pharmacol, 2015, 39(2):917-926. [21] XU F, LIU C, ZHOU D, et al. TGF-beta/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3):157-167. [22] Macias M J, Martin-Malpartida P, Massague J. Structural determinants of Smad function in TGF-beta signaling[J]. Trends Biochem Sci, 2015, 40(6):296-308. [23] LU Z, MA Y, ZHANG S, et al. Transforming growth factor-beta1 small interfering RNA inhibits growth of human embryonic lung fibroblast HFL-I cells in vitro and defends against radiation-induced lung injury in vivo[J]. Mol Med Rep, 2015, 11(3):2 055-2 061. [24] Dadrich M, Nicolay N H, Flechsig P, et al. Combined inhibition of TGFbeta and PDGF signaling attenuates radiation-induced pulmonary fibrosis[J]. Oncoimmunology, 2016, 5(5):e1123366. [25] YANG S, ZHANG M, CHEN C, et al. Triptolide mitigates radiation-induced pulmonary fibrosis[J]. Radiat Res, 2015, 184(5):509-517. [26] Masszi A, Kapus A. Smaddening complexity: The role of Smad3 in epithelial-myofibroblast transition[J]. Cells Tissues Organs, 2011, 193(1-2):41-52. [27] Park J H, Ryu S H, Choi E K, et al. SKI2162, an inhibitor of the TGF-beta type I receptor (ALK5), inhibits radiation-induced fibrosis in mice[J]. Oncotarget, 2015, 6(6):4 171-4 179. [28] Flechsig P, Dadrich M, Bickelhaupt S, et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals[J]. Clin Cancer Res, 2012, 18(13):3 616-3 627. [29] Calik M, Yavas G, Calik S G, et al. Amelioration of radiation-induced lung injury by halofuginone: An experimental study in Wistar-Albino rats[J]. Hum Exp Toxicol, 2017, 36(6):638-647. [30] Robb W B, Condron C, Moriarty M, et al. Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice[J]. Ir J Med Sci, 2010, 179(1):99-105. |