[1] 中国医院协会介入医学中心分会. 中国介入医学白皮书(2021版)[J]. 中华介入放射学电子杂志, 2022, 10(2): 124-130. [2] 焦德超, 王艳丽, 韩新巍, 等. 重视介入医学科普体系的建立和实践[J]. 中华介入放射学电子杂志, 2023, 11(2): 179-181. [3] 唐孟俭, 覃志英, 谢萍, 等. 介入放射学的辐射防护[J]. 职业与健康, 2015, 31(15): 2150-2152+2156. TANG Mengjian, QIN Zhiying, XIE Ping, et al. Radiation protection for interventional radiology[J]. Occupation and Health, 2015, 31(15): 2150-2152+2156. [4] Subramanian S, Waller B R, Winders N, et al. Clinical evaluation of a radio-protective cream for the hands of the pediatric interventional cardiologist[J]. Catheterization and Cardiovascular Interventions : Official Journal of the Society for Cardiac Angiography & Interventions, 2017, 89(4): 709-716. [5] Khandkar A C. Radiation protection system: US9114121B2[P]. 2015-08-25. [6] 赵红枫, 岳保荣, 尉可道. 介入放射学程序中职业人员手部受照剂量研究状况[J]. 中华放射医学与防护杂志, 2013, 33(2): 218-220. ZHAO Hongfeng, YUE Baorong, WEI Kedao. Studies on the exposure dose to the hands of occupational personnel during interventional radiological procedures[J]. Chinese Journal of Radiological Medicine and Protection, 2013, 33(2): 218-220. [7] Loisel F, Menu G, Boyer E, et al. Radiation exposure and the orthopedic surgeon's hand: Measurement of the equivalent dose over 13 months[J]. Hand Surgery & Rehabilitation, 2017, 36(2): 97-101. [8] Omi H, Itabashi T, Nagaoki T, et al. Protecting surgeons' fingers from radiation exposure during lumbosacral selective nerve root block[J]. Spine Surgery and Related Research, 2019, 3(2): 178-182. [9] DEADY E, MOON C, MOORE K, et al. Bismuth: economic geology and value chains[J]. Ore Geology Reviewsdoi, 2022, 143: 1-20. [10] Mehnati P, Malekzadeh R, Sooteh M Y. Use of Bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis[J]. Radiological Physics and Technology, 2019, 12(1): 6-25. [11] Winter H, Brown A L, Goforth A M, et al. Bismuth-Based nano-and microparticles in X ray contrast, radiation therapy, and radiation shielding applications[M]. London: IntechOpen, 2017. [12] Bueno C E D S, Zeferino E G, Manhães L R C J, et al. Study of the Bismuth oxide concentration required to provide Portland cement with adequate radiopacity for endodontic use[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 2009, 107(1): e65-e69. [13] BI Huiting, FEI He, DONG Yushan, et al. Bismuth nanoparticles with “light” property served as a multifunctional probe for X ray computed tomography and fluorescence imaging[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2018, 30(10): 3301–3307. [14] LI Zhenglin, HU Ying, MIAO Zhaohua, et al. Dual-Stimuli responsive Bismuth nanoraspberries for multimodal imaging and combined cancer therapy[J]. Nano Letters, 2018, 18(11): 6778-6788. [15] YUAN Long, CHEN Qiran, Riviere J E, et al. Pharmacokinetics and tumor delivery of nanoparticles[J]. Journal of Drug Delivery Science and Technology, 2023, 83: 104404. [16] Nafisi S, Maibach H I. Chapter 3-skin penetration of nanoparticles[M]. Boston: Elsevier, 2018: 47-88. [17] 周晓靓, 徐文清. 一种X-射线防护剂及其制备方法: CN115487172B[P]. 2022-12-20. [18] Shah D J, Hirpara R, Poelman C L, et al. Impact of radiation therapy on scleroderma and cancer outcomes in scleroderma patients with breast cancer[J]. Arthritis Care & Research, 2018, 70(10): 1517-1524. [19] Burke G, Faithfull S, Probst H. Radiation induced skin reactions during and following radiotherapy: A systematic review of interventions[J]. Radiography, 2022, 28(1): 232-239. |