[1] Tigeras A, Bachet M, Catalette H, et al. PWR iodine speciation and behaviour under normal primary coolant conditions:An analysis of thermodynamic calculations, sensibility evaluations and NPP feedback[J]. Prog Nucl Energy, 2011, 53(5):504-515. [2] Budyka A K. Phase transformations of iodine and other volatile radionuclides in free atmosphere [J]. Aerosol Sci, 2000,31(S1): 480-481. [3] Ogorodnikov B I. An investigation of changes in radionuclide carrier properties [J]. Tekh At Rubezhom, 1999,4:3. [4] 王龙江, 马英, 俞杰, 等. 金属有机骨架材料捕集气态放射性碘的研究进展[J].现代化工, 2017,37(9): 62. WANG Longjiang, MA Ying, YU Jie, et al. Study progress on metal-organic framework materials to capture gaseous radioiodine[J]. Modern Chemical Industry, 2017, 37(9): 62. [5] Nandanwar S U, Coldsnow K, Utgikar V, et al. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment[J]. Chemical Engineering Journal, 2016, 306:369-381. [6] 王龙江, 李永国, 俞杰, 等. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019,33(4): 5. WANG Longjiang, LI Yongguo, YU Jie, el al. Preparation and performance of three-dimensionally ordered macropores copper-based composites for iodine vapor capture[J]. Materials Review, 2019,33(4): 5. [7] 吴凡, 张明美, 赵磊, 等. 用于VOCs吸附的多孔材料的研究进展[J]. 化工环保,2023,43(6):757-766. [8] 李旺长, 黄毓英, 吴彦伟,等. 浸渍活性炭的制备及其捕集气态放射性碘的研究[J]. 辐射防护, 1987, 7(4):278-285. LI Wangchang, HUANG Yuying, WU Yanwei, el al. Preparation and performance study of impregnated charcoal used for removing gaseous radio iodine[J]. Radiation Protection, 1987, 7(4):278-285. [9] 卢玉楷, 高家禄, 尹远淑, 等. 放射性碘-131废气净化研究[J]. 原子能科学技术, 1987,21(2):167-172. LU Yukai, GAO Jialu, YIN Yuanshu, el al. Study on cleaning 131I in radio-gas waster[J]. Atomic Energy Science and Technology, 1987,21(2):167-172. [10] Kovach J L, Holladay D W, Deitz V R, 等.放射性废气中碘的净化和监测[M]. 李启东, 何燧源, 黄昌泰, 译. 北京:原子能出版社, 1986:141-174. [11] 岳龙清, 罗德礼, 岳子玉, 等. 六亚甲基四胺浸渍活性炭捕集甲基碘[J]. 核化学与放射化学,2013,35(2): 121-124. YUE Longqing, LUO Deli, YUE Ziyu, el al. Activated carbon impregnated by hexamethylene tetramine for localization of CH3I[J]. Journal of Nuclear and Radiochemistey, 2013,35(2):121-124. [12] 张计荣, 李永国, 韩丽红, 等. 关于提高活性炭除碘性能的浸渍剂的几点讨论[J]. 核安全, 2016, 15(1):71-75. ZHANG Jirong, LI Yongguo, HAN Lihong, el al. Discussions on impregnants used for improving the adsorbing-radioiodine efficiency of activated carbon[J]. Nuclear Safety, 2016, 15(1):71-75. [13] Kaplan D, Nir I, Shmueli L. Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon[J]. Carbon, 2006, 44(15):3247-3254. [14] Vu Anh Tuan,Keon Ho,Chang-Ha Lee. Removal of gaseous sulfur and phosphorous compounds by carbon-coated porous magnesium oxide composites[J]. Chemical Engineering Journal,2016,283:1234-1243. [15] 刘鲜丽, 陈建利, 王坤俊, 等. 相对湿度及运行时间对通风系统中碘吸附器效率的影响[J]. 暖通空调, 2021, 51(9):145-148. LIU Xianli, CHEN Jianli, WANG Kunjun, et al. Effects of airflow relative humidity and operation time on iodine removal efficiency of iodine adsorbers in ventilation systems[J]. Journal of HV&AC, 2021, 51(9):145-148. [16] 吴潞华, 杜建兴. 碘吸附器净化效率随气流相对湿度变化的研究[J].核科学与工程, 2007, 27(4):344-348. WU Luhua, DU Jianxing. Study on iodine absorber efficiency changing with air relative humidity[J]. Chinese Journal of Nuclear Science and Engineering, 2007, 27(4):344-348. [17] Keon Ho, Seunghyun Moon, Hyung Chae Lee, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions[J].Journal of Hazardous Materials, 2019,368:550-559. [18] Keon Ho, Hoje Chun, Hyung Chae Lee. Design of highly efficient adsorbents for removal of gaseous methyl iodide using tertiary amine-impregnated activated carbon: Integrated experimental and first-principles approach[J]. Chemical Engineering Journal, 2019,373:1003-1011. [19] Obruchikov A V, Lebedev S M. Study on adsorption removal of radioactive methyl iodide by modified busofit carbon fibers[J]. Inorganic Materials: Applied Research,2012,(3): 398-400. [20] Ampelogova N I, Kritskii V G, Krupennikova N I,et al.Carbon-fiber adsorbent materials for removing radioactive iodine from gases[J]. Atomic Energy, 2002,92(4):336-340. [21] Obruchikov A V, Magomedbekov E P, Merkushkin A O.Removal of radioactive methyliodide from the gas stream with a composite sorbent based on polyurethane foam[J].Nuclear Engineering and Technology, 2019, 52(5).DOI:10.1016/j.net.2019.10.019. [22] 曹鑫, 侯学锋, 李鑫, 等. 乏燃料后处理工艺尾气中放射性碘的净化技术[J]. 产业与科技论坛, 2020, 19(4):43-47. [23] Choi B S, Park G I, Kim J H,et al.Adsorption equilibrium and dynamics of methyl iodide in a silver ion-exchanged zeolite column at high temperatures[J].Adsorption-journal of the International Adsorption Society, 2001, 7(2):91-103.DOI:10.1023/A:1011660121182. [24] Nenoff T M, Rodriguez M A, Soelberg N R,et al. Silver-mordenite for radiologic gas capture from complex streams: Dual catalytic CH3I decomposition and I confinement[J]. Microporous and Mesoporous Materials, 2014,200, 297-303. doi:10.1016/j.micromeso.2014.04.041. [25] Chebbi M, Azambre B, Volkringer C,et al.Dynamic sorption properties of metal-organic frameworks for the capture of methyl iodide[J].Microporous & Mesoporous Materials, 2018:S1387181117306716.DOI:10.1016/j.micromeso.2017.10.018. [26] Carboni M, Abney C W, LIU S,et al.Highly porous and stable metal-organic frameworks foruranium extraction[J]. Chemical Science, 2013, 4(6):2396-2402. [27] Demir S, Brune N K, Van Humbeck J F,et al.Extraction of lanthanide and actinide ions from aqueous mixtures using a carboxylic acid-functionalized porous aromatic framework[J].Acs Cent, 2016,(4):253-265.DOI:10.1021/acscentsci.6b00066.S. [28] Debasis Banerjee, Amy J. Cairns, Jian Liu, et al.Potential of metal-organic frameworks for separationof xenon and krypton[J].Accounts of Chemical Research, 2015,48(2): 211-219. [29] Munn A S, Millange F, Frigoli M,et al. Iodine sequestration by thiol-modified MIL-53(Al)[J].Cryst Eng Comm,2016, 18(41):8108-8114. [30] Das S, Heasman P, BEN Teng, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chemical Reviews, 2017, 117(3): 1515-1563. [31] WU Jinlun, XU Fei, LI Shimei, et al. Porous polymers as multifunctional material platforms toward task-specific applications[J]. Advanced Materials, 2019, 31(4): e1802922. [32] ZOU Lanfang, SUN Yujia, CHE Sai, et al. Porous organic polymers for post-combustion carbon capture[J]. Advanced Materials, 2017, 29(37): 1700229. [33] Dawson R, Cooper A I, Adams D J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4): 530-563. [34] XU Yanhong, JIN Shangbin, XU Hong, et al. Conjugated microporous polymers: design, synthesis and application[J]. Chemical Society Reviews, 2013, 42(20): 8012-8031. [35] JIANG Jiaxing, SU Fabing, Trewin A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie, 2007, 46(45): 8574-8578. [36] Abdelmoaty Y H, Tessema T D, Choudhury F A, et al. Nitrogen-rich porous polymers for carbon dioxide and iodine sequestration for environmental remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16049-16058. [37] JIE Kecheng, ZHOU Yujuan, SUN Qi, et al. Mechanochemical synthesis of pillar quinine derived multi-microporous organic polymers for radioactive organic iodide capture and storage[J]. Nature Communications, 2020, 11(1): 1086. |