RADIATION PROTECTION ›› 2024, Vol. 44 ›› Issue (S1): 1-7.
Previous Articles Next Articles
XU Yuhan, FANG Sheng, DONG Xinwen, ZHUANG Shuhan
Received:2023-11-24
Online:2024-11-20
Published:2024-12-26
CLC Number:
XU Yuhan, FANG Sheng, DONG Xinwen, ZHUANG Shuhan. A review of radioactive leakage source parameter inversion methods[J].RADIATION PROTECTION, 2024, 44(S1): 1-7.
| [1] De Meutter P, Camps J, Delcloo A, et al. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling[J]. Scientific Reports, 2017, 7(1): 8762. [2] Saunier O, Didier D, Mathieu A, et al. Atmospheric modeling and source reconstruction of radioactive Ruthenium from an undeclared major release in 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 24991-25000. [3] Wotawa G, DE Geer le, Denier P, et al. Atmospheric transport modelling in support of CTBT verification-Overview and basic concepts[J]. Atmospheric Environment, 2003, 37(18): 2529-2537. [4] PAN Pujing, Ungar R K. Nuclear event zero-time calculation and uncertainty evaluation[J]. Journal of Environmental Radioactivity, 2012, 106: 65-72. [5] Ulimoen M, Klein H. Localisation of atmospheric release of radioisotopes using inverse methods and footprints of receptors as sources[J]. Journal of Hazardous Materials, 2023, 451: 131156. [6] 葛宝珠, 陆芊芊, 陈学舜, 等. 放射性核素大气扩散数值模拟研究综述[J]. 环境科学学报, 2021, 41(5): 1599-1609. [7] American Geophysical Union. Lagrangian modeling of the atmosphere[M]. Hoboken: John Wiley & Sons, 2013. [8] Pisso I, Sollum E, Grythe H, et al. The lagrangian particle dispersion model FLEXPART version 10.4[J]. Geoscientific Model Development, 2019, 12(12): 4955-4997. [9] Draxler R R, Rolph G D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready.arl.noaa.gov/HYSPLIT. php). NOAA Air Resources Laboratory[J]. Silver Spring, MD, 2010, 25(1). [10] Peckham S E. WRF/Chem version 3.3 user’s guide[DB/OL].https://repository.library.noaa.gov/view/noaa/11119. [11] Binkowski F S, Roselle S J. Models-3 community multiscale air quality(CMAQ)model aerosol component 1.Model description[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D6):4184. [12] Thykier-Nielsen S, Deme S, Mikkelsen T. Description of the atmospheric dispersion module RIMPUFF: RODOS(WG2)-TN(98)-02[R/OL].(1999-04-29).https://resy5.ites.kit.edu/RODOS/Documents/Public/Handbook/Volume3/4_2_6_RIMPUFF.pdf. [13] Allwine K J, Dabberdt W F, Simmons L L. Peer review of the CALMET/CALPUFF modeling system: No. 68-D-98-092[R]. Durham: EPA, 1998. [14] Brandt J, Mikkelsen T, Thykier-Nielsen S, et al. The Danish Rimpuff and Eulerian accidental release model (the DREAM)[J]. Physics and Chemistry of the Earth, 1996, 21(5/6): 441-444. [15] Lyons W A, Pielke R A, Cotton W R, et al. Recent applications of the Rams meteorological and the hypact dispersion models[M]. Boston: Springer, 1994: 19-26. [16] Seibert P, Frank A. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 51-63. [17] Mekhaimr S A, Abdel Wahab M M. Sources of uncertainty in atmospheric dispersion modeling in support of comprehensive Nuclear-Test-Ban Treaty monitoring and verification system[J]. Atmospheric Pollution Research, 2019, 10(5): 1383-1395. [18] Hutchinson M, Oh H, CHEN Wenhua. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J]. Information Fusion, 2017, 36: 130-148. [19] Saunier O, Ingremeau J J, Hoffman I, et al. Methodology for the investigation of undeclared atmospheric releases of radionuclides: application to recent radionuclide detections in Northern Europe from 2019 to 2022[J]. Annals of Nuclear Energy, 2023, 192: 109907. [20] Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503. [21] Seibert P. Methods for source determination in the context of the CTBT radionuclide monitoring system[C]//Informal Workshop on Meteorological Modelling in Support of CTBT Verification. Vienna: Department of Meteorology of the Agricultural University of Vienna, 2000: 4-6. [22] CHAI T, Stein A, Ngan F. Weak-constraint inverse modeling using HYSPLIT-4 Lagrangian dispersion model and Cross-Appalachian Tracer Experiment(CAPTEX)observations-effect of including model uncertainties on source term estimation[J]. Geoscientific Model Development, 2018, 11(12): 5135-5148. [23] Tichý O, mídl V, Hofman R, et al. Bayesian inverse modeling and source location of an unintended 131 I release in Europe in the fall of 2011[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12677-12696. [24] De Meutter P, Camps J, Delcloo A, et al. Source localisation and its uncertainty quantification after the third DPRK nuclear test[J]. Scientific Reports, 2018, 8(1): 10155. [25] Dumont L B J, Bocquet M, Saunier O, et al. Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106 Ru event[J]. Atmospheric Chemistry and Physics, 2021, 21(17): 13247-13267. [26] Dumont Le Brazidec J, Bocquet M, Saunier O, et al. MCMC methods applied to the reconstruction of the autumn 2017 Ruthenium-106 atmospheric contamination source[J]. Atmospheric Environment: X, 2020, 6: 100071. [27] Pieter De M, Hoffman I, Ungar K. On the model uncertainties in Bayesian source reconstruction using an ensemble of weather predictions,the emission inverse modelling system FREAR v1.0,and the Lagrangian transport and dispersion model Flexpart v9.0.2[J]. Geoscientific Model Development, 2021, 14(3): 1237-1252. [28] Lucas D D, Simpson M, Cameron-Smith P, et al. Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant[J]. Atmospheric Chemistry and Physics, 2017, 17(22): 13521-13543. |
| [1] | LI Lifan, FAN Xuebo, LI Huiping, HU Xiang, SHI Xinyuan, CHEN Dongbing. Study on the relationship between 210Pb activity concentration in surface air and meteorological parameters based on Fourier series [J]. RADIATION PROTECTION, 2024, 44(6): 623-630. |
| [2] | DU Yunwu, DENG Xiaoqin, BI Chaowen, ZHU Jie, WANG Liang, WANG Qian, LV Yingfu, WANG Yangyang, HE Dai. Influence and correction of sample mass thickness variation for total β radioactivity measurement in water [J]. RADIATION PROTECTION, 2024, 44(6): 612-622. |
| [3] | DU Yunwu, DENG Xiaoqin, BI Chaowen, ZHU Jie, WANG Liang, ZENG Yi, GUO Xuying, WANG Yan, WANG Qian. Influence and correction of sample mass thickness variation for total alpha radioactivity measurement in water [J]. RADIATION PROTECTION, 2023, 43(6): 566-575. |
| [4] | LIN Jing, HUANG Dekun, NI Jialin, JI Jianda, ZHONG Qiangqiang, ZHANG Jinzhao, YU Tao. Inter-comparison results of 137Cs and 90Sr in seawater among analytical laboratories [J]. RADIATION PROTECTION, 2023, 43(5): 485-489. |
| [5] | LIU Shubo, MEI Aihua. Study on measuring radon exhalation rate of building materials by activated carbon box method [J]. RADIATION PROTECTION, 2023, 43(S1): 56-60. |
| [6] | CAO Longsheng, LIAO Yuhang, LV Anbiao, ZHOU Ying, ZHOU Feng. Study on monitoring method of automatic continuous sampling and analysis system for ultra-large flow aerosol [J]. RADIATION PROTECTION, 2023, 43(3): 235-242. |
| [7] | BAI Fan, LI Xuezhen, MA Guoxue, YANG Yong. Research and evaluation of natural environmental γ radiation dose rate data preprocessing method based on time sequences analysis [J]. RADIATION PROTECTION, 2023, 43(2): 128-136. |
| [8] | BAO Li, CHEN Ling, REN Xiaona, WANG Ruijun. Assessment of uncertainty in collecting radioactive soil samples by sampling and analytical quality control (SAX) [J]. RADIATION PROTECTION, 2023, 43(1): 47-54. |
| [9] | ZHANG Lei. Study on the absolute activity measurement method of 125I nuclide point source and volume source by HPGe spectrometer [J]. RADIATION PROTECTION, 2022, 42(6): 556-562. |
| [10] | ZHANG Jing, LI Pengxiang, MA Xuyuan, LI Zhou, BAO Li, LIANG Runcheng. Some discussions about Asia-Pacific ALMERA group proficiency test and inter-comparison exercise on the determination of gross-alpha and gross-beta in filter [J]. RADIATION PROTECTION, 2021, 41(S1): 45-49. |
| [11] | WEI Xinxiang, ZHANG Linxi, KUANG Fuxiang, XU Naizheng. Investigation of natural radioactive environment in a bone coal mine area, in She County, Anhui Province [J]. RADIATION PROTECTION, 2021, 41(4): 343-350. |
| [12] | CHEN Donghui, ZHU Guozhen, LI Zhichun, PENG Junzhe, CAO Zhenwei, LONG Huijia, GE Liangquan, LI Xianjie. Investigation and evaluation of radon activity concentration in thestations of Changsha Metro Line 1 [J]. RADIATION PROTECTION, 2020, 40(4): 286-289. |
| [13] | LI Ke, LIANG Manchun, YUE Feng, LIN Quanyi, ZHANG Miao, ZHANG Yan, YUE Huiguo, YANG Jie, CHEN Jiehe, YUAN Hongyong, CHENG Jianping, YANG Dandan, SHEN Hongmin, LIU Fang. The design of national dispatching platform for emergency radiological monitoring [J]. RADIATION PROTECTION, 2019, 39(6): 487-496. |
| [14] | LI Ke, LIANG Manchun, YUE Feng, LIN Quanyi, ZHANG Miao, ZHANG Yan, YUE Huiguo, YANG Jie, CHEN Jiehe, YUAN Hongyong, CHENG Jianping, YANG Dandan, SHEN Hongmin, LIU Fang. The design of national dispatching platform for emergency radiological monitoring [J]. RADIATION PROTECTION, 2019, 39(6): 487-496. |
| [15] | HUANG Yanjun,HE Yi,SHANGGUAN Zhihong,CHEN Chaofeng,ZHAO Feng. Discussion on some critical issues in the emergency monitoring program of environmental radiation in nuclear power plant [J]. RADIATION PROTECTION, 2019, 39(5): 355-364. |
|