RADIATION PROTECTION ›› 2024, Vol. 44 ›› Issue (3): 199-209.

Previous Articles     Next Articles

Expert consensus on radiation biodosimetry by semi-automatic analysis of dicentric chromosome

Nuclear Emergency Medicine Branch of Chinese Nuclear Society, Chinese Society of Radiological Medicine and Protection of Chinese Medical Association, Radiological Health Professional Committee of Chinese Preventive Medicine Association, Nuclear and Radiation Emergency Response Branch of China Society of Radiation Protection   

  • Received:2024-03-12 Online:2024-05-20 Published:2024-05-24

Abstract: Over the past ten years, semi-automatic analysis of dicentric chromosome (dic) has been widely used for estimating radiation biological dose internationally due to its technical maturity. However, there are still no relevant technical specifications and standards in China, although both technical reports published by the IAEA and technical standards published by the International Organization for Standardization have recommended this method for dose estimation. The present technical consensus of biological dose estimation was established from the aspects of the dic semi-automatic analysis principle, main technical content, factor analysis, and application examples, based on more than 30 years of practical experience for dic manual and semi-automatic analysis at home and abroad. Compared with the existing national standard GB/T 28236, it could significantly improve the efficiency of biological dose estimation, and could also reduce the requirements for technical proficiency of professionals, thus could be better promoted and applied. Similar to manual analysis, dic semi-automatic analysis could be used to estimate and reconstruct the exposed dose under different radiation exposure scenarios including acute uniform, local, extensional irradiation, and delayed sampling. Considering the inefficiency of current domestic dose estimation which cannot meet the needs of clinical classification and diagnosis for large-scale nuclear and radiation accidents that have a large number of exposed people, the promotion and application of dic semi-automatic analysis might solve these bottleneck problems and provide technical support for further development of relevant national standard.

Key words: ionizing radiation, dicentric chromosome, semi-automatic analysis, biodosimetry, expert consensus

CLC Number: 

  • R144.1