[1] |
贾庆明, 罗海清, 余忠华. 放射性脑损伤发病机制与治疗方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(12):1236-1239.JIA Q M, LUO H Q, YU Z H. Pathogenesis and treatment of radiation-induced brain injury[J]. Journal of Chinese Practical Diagnosis and Therapy, 2018, 32(12):1236-1239.
|
[2] |
MA Z C, HONG Q, WANG Y G, et al. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells[J]. Biological & Pharmaceutical Bulletin, 2010, 33(5):752-758.
|
[3] |
CHEN N, XU R J, WANG L L, et al. Protective effects of magnesium sulfate on radiation induced brain injury in rats[J]. Curr Drug Deliv, 2018,15(8):1159-1166.
|
[4] |
徐华林. 硫酸镁防治人脐静脉血管内皮细胞放射损伤机制的初步探索[D]. 苏州大学, 2015.XU H L. The exploration of the mechanism MgSO4 prevent and treat the radiation-induced HUVEC injury[D]. Soochow University, 2015.
|
[5] |
Pena L A, Fuks Z, Kolesnick R N. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency[J]. Cancer Research, 2000, 60(2):321-327.
|
[6] |
LI Y Q, CHEN P, Jain V, et al. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord[J]. Radiation Research, 2004, 161(2):143-152.
|
[7] |
Rousseau M, Marie-Hélène Gaugler, Rodallec A, et al. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration[J]. Biochemical & Biophysical Research Communications, 2011, 414(4):750-755.
|
[8] |
Benjaminsen I C, Graff B A, Brurberg K G, et al. Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: A preclinical study of human melanoma xenografts[J]. Magnetic Resonance in Medicine, 2004, 52(2):269-276.
|
[9] |
Tanino T, Kanasaki Y, Tahara T, et al. Radiation-induced microbleeds after cranial irradiation: evaluation by phase-sensitive magnetic resonance imaging with 3.0 tesla[J]. Yonago Acta Medica, 2013, 56(1):7-12.
|
[10] |
MING W, HONG L, HUANG H, et al. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation[J]. Journal of Korean Medical Science, 2012, 27(3):291-299.
|
[11] |
Wilson C M, Gaber M W, Sabek O M, et al. Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment[J]. International Journal of Radiation Oncology Biology Physics, 2009, 74(3):934-941.
|
[12] |
Brown W R, Blair R M, Moody D M, et al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: A potential rat model of vascular dementia[J]. Journal of the Neurological Sciences, 2007, 257(1-2):67-71.
|
[13] |
Benekli M, Güllü I H, Tekuzman G, et al. Circulating intercellular adhesion molecule-1 and E-selectin levels in gastric cancer[J]. Br J Cancer, 1998, 78(2):267-271.
|
[14] |
Kesanakurti D, Chetty C, Rajasekhar Maddirela D, et al. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma[J]. Oncogene, 2013, 32(43):5144-5155.
|
[15] |
Behrends U, Peter R U, Hintermeier-Knabe R, et al. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro[J]. Journal of Investigative Dermatology, 1994, 103(5):726-730.
|
[16] |
Kim S, Joo Y E. Theaflavin inhibits LPS-induced IL-6, MCP-1, and ICAM-1 expression in bone marrow-derived macrophages through the blockade of NF-κB and MAPK signaling pathways[J]. Chonnam Medical Journal, 2011, 47(2): 104-110.
|
[17] |
LIU X H, PAN L L, YANG H B, et al. Leonurine attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: Involvement of reactive oxygen species and NF-κB pathways[J]. European Journal of Pharmacology, 2012, 680(1-3):108-114.
|
[18] |
Baeuml H, Behrends U, Peter R U, et al. Ionizing radiation induces, via generation of reactive oxygen intermediates, intercellular adhesion molecule-1 (ICAM-1) gene transcription and NFκB-like binding activity in the ICAM-1 transcriptional regulatory region[J]. Free Radical Research Communications, 1997, 27(2): 127-142.
|
[19] |
Hoane M R. Assessment of cognitive function following magnesium therapy in the traumatically injured brain[J]. Magnesium Research, 2007, 20(4): 229-236.
|
[20] |
Rochelson B, Dowling O, Schwartz N, et al. Magnesium sulfate suppresses inflammatory responses by human umbilical vein endothelial cells (HUVECs) through the NFkappaB pathway[J]. Journal of Reproductive Immunology, 2007, 73(2):101-107.
|