[1] Gulhane N P, Landge A D, Shukla D S, et al. Experimental study of iodine removal efficiency in self-priming venturi scrubber[J]. Annals of Nuclear Energy, 2015, 78:152-159. [2] Bal M, Jose R C, Meikap B C. Control of accidental discharge of radioactive materials by filtered containment venting system: A review[J]. Nuclear Engineering and Technology, 2019, 51(4): 931-942. [3] Bosland L, Dickinson S, Glowa G A, et al. Iodine-paint interactions during nuclear reactor severe accidents[J]. Annals of Nuclear Energy, 2014, 74: 184-199. [4] The American Society of Mechanical Engineers. Code on nuclear air and gas treatment:ASME AG-1—2019[S].New York: ASTM International, 2019. [5] Yang J, Lee D Y, Miwa S, et al. Overview of filtered containment venting system in nuclear power plants in Asia[J]. Annals of Nuclear Energy, 2018, 119: 87-97. [6] Simondi-Teisseire B, Girault N, Payot F, et al. Iodine behaviour in the containment in Phébus FP tests[J]. Annals of Nuclear Energy, 2013, 61: 157-169. [7] Clément B, Zeyen R. The objectives of the Phébus FP experimental programme and main findings[J]. Annals of Nuclear Energy, 2013, 61: 4-10. [8] Girault N, Dickinson S, Funke F, et al. Iodine behaviour under LWR accident conditions: Lessons learnt from analyses of the first two Phebus FP tests[J]. Nuclear Engineering and Design, 2006, 236(12): 1293-1308. [9] Clément B, Hanniet-Girault N, Repetto G, et al. LWR severe accident simulation: synthesis of the results and interpretation of the first Phebus FP experiment FPT0[J]. Nuclear Engineering and Design, 2003, 226(1): 5-82. [10] Dickinson S, Sims H E, Belval-Haltier E, et al. Organic iodine chemistry[J]. Nuclear Engineering and Design, 2001, 209(1-3): 193-200. [11] Bosland L, Colombani J. Review of the potential sources of organic iodides in a NPP containment during a severe accident and remaining uncertainties[J]. Annals of Nuclear Energy, 2020, 140: 107127. [12] Glowa G A, Moore C J, Ball J M. The main outcomes of the OECD behaviour of Iodine(BIP) project[J]. Annals of Nuclear Energy, 2013, 61: 179-189. [13] Noguchi H, Murata M. Physicochemical speciation of airborne 131I in Japan from Chernobyl[J]. Journal of Environmental Radioactivity, 1988, 7(1): 65-74. [14] Thangamani I, Gera B, Dutta A, et al. Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment[J]. Kerntechnik, 2011, 76(5): 324-336. [15] Dong S, Yang J. Overview of the experimental studies and numerical simulations on the filtered containment venting systems with wet scrubbers[J]. Annals of Nuclear Energy, 2019, 132: 461-485. [16] Vien T T, Narabayashi T, Takahashi T, et al. Effects of the baffle plate of the advanced venturi scrubber on decontamination factor of the filtered containment venting system[J].Japanese Journal of Multiphase Flow, 2021, 35(2): 337-345. [17] Kawamura S, Kimura T, Watanabe F, et al. Development of an organic iodine filter for filtered containment venting systems of nuclear power plants[J]. Trans At Energy Soc, 2016, 15(4): 192-209. [18] Kawamura S, Kimura T, Ohmori S, et al. Development of an organic iodine filter design and performance improvement of filtered containment venting system[C]//The Proceedings of the National Symposium on Power and Energy Systems, Japanese, 2016: B121. [19] Bosma R, Pouw R J, van Schaik W, et al. Climatic chamber for dew-point temperatures up to 150 ℃[J]. Metrologia, 2018, 55(4): 597-608. [20] Peruzzi A, Bosma R, Tabandeh S, et al. A comparison of relative humidity calibration facilities at temperatures up to 170 ℃[J]. Measurement, 2022, 189: 110435. [21] Georgin E, Bernard N, Salem M. New calibration facility developped at LNE-CETIAT[C]//19th International Congress of Metrology. Paris, France, 2019: 18004. [22] Tabandeh S. Advances in Humidity Standards[D]. Torino: Politecnico di Torino, 2019. [23] Chebbi M, Azambre B, Monsanglant-Louvet C, et al. Effects of water vapour and temperature on the retention of radiotoxic CH3I by silver faujasite zeolites[J]. Journal of Hazardous Materials, 2021, 409(30): 124947. [24] Kurata M, Osaka M, Jacquemain D, et al. Advances in fuel chemistry during a severe accident: update after Fukushima daiichi nuclear power station(FDNPS) accident[J]. Advances in Nuclear Fuel Chemistry, 2020: 555-625. [25] 赵金涛,姚迪,王静. 核电厂安全壳设计时各种温度作用分析方法的探讨[J].建筑结构,2017(S2):170-172. ZHAO Jintao, YAO Di, WANG Jing. Discussion on analysis methods of various thermal actions in the design of nuclear power plant containment[J].Building Structure,2017(S2):170-172. [26] Guilbert S, Bosland L, Fillet S, et al. Formation of organic iodide in the containment in case of a severe accident[J]. Transactions of the American Nuclear Society, 2008, 98: 291-292. [27] Birchley J, Haste T, Bruchertseifer H, et al. Phébus-FP: results and significance for plant safety in Switzerland[J]. Nuclear Engineering and Design, 2005, 235(15): 1607-1633. [28] Wagner W, Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use(Review)[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535. |