[1] Sergiy M Baschenko.Remote optical detection of alpha particle sources[J]. J Radiol Prot,2004,24(1):75-82. [2] Sand J, Hannuksela1 V, Ihantola S, et al.Remote optical detection of alpha radiation: IAEA-CN-184/23[C].IAEA,2004. [3] Lamadie F,Costes J,Delmas F,et al.Alpha imaging: First results and prospects[C]//IEEE Symposium Conference Record Nuclear Science 2004.IEEE,2004:1594-1598. [4] Lamadie F,Delmas F,Mahe C, et al. Remote alpha imaging in nuclear installations: new results and prospects[J].IEEE Transaction on Nuclear Science, 2005,52(6):3035-3039. [5] Sand J, et al.Remote optical detection of alpha radiation[Z]. In Symposium on international safeguards, 2010 Nov 1-5: Vienna, Austria. [6] Sand J. Alpha radiation detection via radioluminescence of air[D].Tampere University of Technology,2016. [7] Sand J, Ihantola S, Peräjärvi K,et al.Imaging of alpha emitters in a field environment[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipmentvol,2015, 782:13-19. [8] Sand J, Nicholl A, Hrnecek E, et al. Stand-off radioluminescence mapping of alpha emitters under bright lighting[J]. IEEE Transactions on Nuclear Science,2016,63(3):1777-1783. [9] Inriga E, Koslowskyb V, Andrewsb B,et al. Development and testing of an air fluorescence imaging system for the detection of radiological contamination[J]. AIP Conference Proceedings, 2011,1412(1), 393-400. [10] Inrig E, Erhardt L, Koslowsky V,et al. An air fluorescence imaging system for the detection of radiological contamination[C]//Proc. of SPIE. 2011. [11] Kume N, Takakura K, Nakayama K, et al. Remote detector of alpha-ray using ultraviolet ray emitted by nitrogen in air[C]//Proceedings of 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, 2013: 1-6. [12] Richard K. Harrison, Jeffrey B. Martin, Dora Wiemann,et al.New radiological material detection technologies for nuclear forensics: remote optical imaging and graphene-based sensors[R]. SANDIA report,SAND2015-7567,2015. [13] Crompton A J, Gamage K A A, Bell S,et al. First results of using a UVTron flame sensor to detect alpha-induced air fluorescence in the UVC wavelength range[J]. Sensors,2017,17(12):2756. [14] Ivanov O, Stepanov V E, Smirnov S V,et al.Development of method for detection of alpha contamination with using UV-Camera DayCor by OFIL[C]//Proceeding of 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23-29 Oct. 2011. [15] Kerst T, Sand J, Ihantola S,et al. Stand off Alpha radiation detection for hot cell imaging and crime scene investigation[J]. Optical Review,2018,25(3): 429-436. [16] Crompton A J, Gamage K A A, Bell S,et al. Gas flow to enhance the detection of alpha-induced air radioluminescence based on a UVTron flame sensor[J]. Sensors,2018,18(6):1842. [17] Thomas Kerst. Optical stand-off detection of alpha radiation in nuclear facilities[D]. Tampere University,2019. [18] Thomas Kerst, Juha Toivonen. Intense rdioluminescence of NO/N2-mixture in solar blind spectral region[J]. Optics express,2018, 26(26): 33764-33771. [19] Thomas Kerst, Juha Toivonen. Dynamic enhancement of nitric oxide radioluminescence with nitrogen purge[J]. Scientific Reports,2019,9(1):13384. [20] Krasniqi F S, Kerst T, Leino M,et al. Standoff UV-C imaging of alpha particle emitters[J]. Nuclear Inst. and Methods in Physics Research, A,2021,987:164821. [21] Kerst T. Optical stand-off detection of alpha radiation in nuclear facilities[D]. Tampere University,2019. [22] Sand J. Alpha radiation detection via radioluminescence of air[D]. Tampere University of Technology,2016. [23] Ihantola S, Sand J, Peräjärvi K, et al. Principles of UV-gamma coincidence spectrometry[J].Nuclear Instruments and Methods in Physics Research Section A, 2012, 690(21):79-84. [24] Ihantola S,Sand J, Perajarvi K,et al. Fluorescence assisted gamma spectrometry for surface contamination analysis[J].IEEE Transactions on Nuclear Science,2013, 60(1):305-309. [25] Ihantola S. Novel approaches to the analysis of nuclear and other radioactive materials—Improving detection capability through alpha-gamma coincidence, alpha-induced optical fluorescence and advanced spectrum analysis[D]. Aalto University,2013. [26] Crompton A J, Gamage K A A, Jenkins A,et al. Alpha particle detection using alpha-induced air radioluminescence: A review and future prospects for preliminary radiological characterization for nuclear facilities decommissioning[J].Sensors, 2018, 18(4):1015. [27] Krassimir Stoev. Review of methods for remote detection and imaging of alpha radiation[C]. 4th Canadian Conference on Nuclear Waste Management, Decommissioning and Environmental Restoration Ottawa Marriott Hotel, Ottawa, ON, Canada, September 8-11, 2019. [28] Wu Zeqian. Application and development of noncontact detection method of α-particles based on radioluminescence[J]. Sensors, 2021, 22(1): 202. [29] Sand J. Radioluminescence yield of alpha particles in air[J]. New Journal of Physics, 2014,16(5): 053022. [30] RemoteALPHA. Remote and real-time optical detection of alpha-emitting radionuclides in theenvironment[Z].https://www.euramet.org/researchinnovation/search-research-projects/details/project/remote-and-real-timeoptical-detection-of-alpha-emitting-radionuclides-in-the-environmet. 2020. |