RADIATION PROTECTION ›› 2023, Vol. 43 ›› Issue (3): 193-208.
Previous Articles Next Articles
HE Diwei, CHEN Zhiying, TANG Danfeng, ZHANG Ying
Received:
2022-05-24
Online:
2023-05-20
Published:
2023-06-07
CLC Number:
HE Diwei, CHEN Zhiying, TANG Danfeng, ZHANG Ying. Progress of research on electromagnetic radiation safety of implantable medical devices[J].RADIATION PROTECTION, 2023, 43(3): 193-208.
[1] Hendee W R, Boteler J C. The question of health effects from exposure to electromagnetic fields [J]. Health Physics, 1994, 66(2): 127-136. [2] LI G, PANG X F. Effects of electromagnetic field exposure on electromagnetic properties of biological tissues [J]. Progress in Biochemistry and Biophysics, 2011, 38(7): 604-610. [3] Curcio G. Exposure to mobile phone-emitted electromagnetic fields and human attention: No evidence of a causal relationship [J]. Frontiers in Public Health, 2018, 6: 12. [4] LIU L Y, DENG H, TANG X P, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31): 6. [5] Larsen A I. Congenital malformations and exposure to high-frequency electromagnetic radiation among Danish physiotherapists[J]. Scandinavian Journal of Work Environment & Health, 1991, 17(5): 318-323. [6] Ouellet-Hellstrom R, Stewart W F. Miscarriages among female physical therapists who report using radio and Microwave-frequency electromagnetic radiation[J]. American Journal of Epidemiology, 1993, 138(10): 775-786. [7] Li D K, Odouli R, Wi S, et al. A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage[J]. Epidemiology, 2002, 13(1): 9-20. [8] Savitz D A, Olshan A, Gallagher K. Maternal occupation and pregnancy outcome[J]. Epidemiology, 1996, 7(3): 269-274. [9] Roosli M. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: A systematic review[J]. Environmental Research, 2008, 107(2): 277-287. [10] Kabuto M, Nitta H, Yamamoto S, et al. Childhood leukemia and magnetic fields in Japan: A case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan[J]. International Journal of Cancer, 2010, 119(3): 643-650. [11] Genuis S J. Fielding a current idea: Exploring the public health impact of electromagnetic radiation[J]. Public Health, 2008, 122(2): 113-124. [12] Batool S, Bibi A, Frezza F, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 3121-3128. [13] ZHOU Y J, LIU C H, HUANG Y C. Wireless power transfer for implanted medical application: A review[J]. Energies, 2020, 13(11): 30. [14] Mat M H, Abd Malek M F, Whittow W G, et al. Ear prosthesis evaluation: specific absorption rate levels in the head due to different angles and frequencies of electromagnetic exposure[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(4): 514-524. [15] 马玉. 构建用于电磁辐射比吸收率数值计算的标准中国人头[D]. 北京信息科技大学, 2014. [16] Guido K, Kiourti A. Wireless wearables and implants: A dosimetry review [J]. Bioelectromagnetics,2020,41(1):3-20. [17] 吕英华. 计算电磁学的数值方法[M]. 北京:清华大学出版社, 2006. [18] Taflove A. Advances in computational electrodynamics: The finite-difference time-domain method[M]. Artech House,Boston MA, 1998. [19] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社, 2002. [20] Kiourti A, Christopoulou M, Nikita K S. Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry[C]//2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. APSURSI 2011, July 3, 2011 - July 8, 2011, 2011: 392-395. [21] Gemio J, Parron J, Soler J. Human body effects on implantable antennas for ism bands applications: Models comparison and propagation losses study[J]. Progress in Electromagnetics Research-Pier, 2010, 110: 437-452. [22] Soontornpipit P. Design of implanted PIFA for implantable biotelemetry locations: Chest and abdomen[C]//International Electrical Engineering Congress. iEECON 2016, March 2, 2016 - March 4, 2016, 2016: 236-239. [23] Shah I A, Basir A, Cho Y and Yoo H. Safety analysis of medical implants in the human head exposed to a Wireless power transfer system[J]. In IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3):640-649. [24] Weiland T. A discretization method for the solution of Maxwell’s equations for six-component fields[J]. Electron Commun, 1977,31:116-120. [25] XU Y S, KONG L. Time domain electromagnetic differential equation methods[J]. Advanced Materials Research, 2012, (1700):490-495. [26] Leithon J. Electromagnetic simulation of a rectangular cavity: A comparison between FIT and FDTD results[M]. IEEE, 2008. [27] Al-Kalbani A I, Yuce M R, Redoute J M. Safe SAR levels in inductively powered brain implanted visual prostheses[C]//International Symposium on Electromagnetic Compatibility. EMC EUROPE 2012, September 17, 2012 - September 21, 2012, 2012. [28] Smondrk M, Benova M, Psenakova Z. Evaluation of SAR in human body model comprising of implanted pacemaker[C]//12th International ELEKTRO Conference. ELEKTRO 2018, May 21, 2018 - May 23, 2018, 2018: 1-5. [29] Spitzer V. The visible human male: Technical report[J]. J Am Med Info Association, 1996, 3: 118-130. [30] Permana H, Fang Q, Lee S Y. Comparison study on specific absorption rate of three implantable antennas designed for retinal prosthesis systems[J]. Iet Microwaves Antennas & Propagation, 2013, 7(11): 886-893. [31] Zradzinski P, Karpowicz J, Gryz K. Electromagnetic energy absorption in a head approaching a radiofrequency identification (RFID) reader operating at 13.56 MHz in users of hearing implants versus non-users[J]. Sensors, 2019, 19(17): 16. [32] ZHANG H, LIN Z, SHA W, et al. Electromagnetic-thermal analysis of human head exposed to cell phones with the consideration of radiative cooling[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17: 1584-1587. [33] A T W, B S S, B P R. Specific absorption rate and temperature distributions in human head subjected to mobile phone radiation at different frequencies - ScienceDirect[J]. International Journal of Heat and Mass Transfer, 2012, 55(1-3): 347-359. [34] Permana H, Fang Q, Rowe W S T. Hermetic implantable antenna inside vitreous humor simulating fluid[J]. Progress in Electromagnetics Research-Pier, 2012, 133: 571-590. [35] Prakash C, Gangwar R P S. Six layers circular microstrip antenna implanted in a phantom of vitreous humor[C]//2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications. IMWS-Bio 2014, December 8, 2014 - December 10, 2014, 2014: 1-3. [36] Schwerdt H N, Miranda F A, Chae J. Analysis of electromagnetic fields induced in operation of a wireless fully passive backscattering neurorecording microsystem in emulated human head tissue[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 2170-2176. [37] Hout S, Chung J Y. Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom[J]. IEEE Access, 2019, 7: 162062-162069. [38] Shah I A, Yoo H. Assessing human exposure with medical implants to electromagnetic fields from a wireless power transmission system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, (99):1-8. [39] Pisa S, Calcagnini G, Cavagnaro M, et al. SAR and temperature increase in a thorax model with implanted pace-maker under magnetic resonance imaging[C]//2008 IEEE International Symposium on Electromagnetic Compatibility. EMC 2008, August 18, 2008 - August 22, 2008. [40] Gorny K R, Bernstein M A, Felmlee J P, et al. Calorimetric calibration of head coil SAR estimates displayed on a clinical MR scanner[J]. Physics in Medicine and Biology, 2008, 53(10): 2565-2576. [41] Nordbeck P, Fidler F, Weiss I, et al. Spatial distribution of RF-induced E-fields and implant heating in MRI[J]. Magnetic Resonance in Medicine, 2010, 60(2): 312-319. [42] Bassen H, Kainz W, Mendoza G, et al. MRI-induced heating of selected thin wire metallic implants-laboratory and computational studies-findings and new questions raised[J]. Minim Invasive Ther Allied Technol, 2006, 15(2): 76-84. [43] Mattei E, Triventi M, Calcagnini G, et al. Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic probes[J]. Physics in Medicine & Biology, 2007, 52(6): 1633-1646. [44] Dharmadhikari S, James J R, Nyenhuis J, et al. Evaluation of radiofrequency safety by high temperature resolution MR thermometry using a paramagnetic lanthanide complex[J]. Magnetic Resonance in Medicine, 2016, 75(5): 2121-2129. [45] 林浩. 比吸收率(SAR)测量值的比对评估[J]. 现代电信科技, 2012,(3): 5. [46] Kawdungta S,Boonpoonga A,Phongcharoenpanich C. MICS/ISM meander-line microstrip antenna encapsulated in Oblong-Shaped pod for gastrointestinal tract diagnosis[J].Sensors,2021,21(11):3897. [47] Laakso I, Uusitupa T, Ilvonen S. Comparison of SAR calculation algorithms for the finite-difference time-domain method[J]. Physics in Medicine & Biology, 2010, 55(15): N421. [48] 张剑. 基于有限积分技术的特高频局部放电传感器灵敏度仿真计算[J]. 电气自动化, 2019, 41(6): 4. [49] Miry C, Loison R, Gillard R. An efficient bilateral dual-grid-FDTD approach applied to on-body transmission analysis and specific absorption rate computation[J]. Ieee Transactions on Microwave Theory and Techniques, 2010, 58(9): 2375-2382. [50] 左胜, 白杨, 张玉, 等. 复杂环境中手机电磁辐射的比吸收率计算[J]. 西安电子科技大学学报, 2019, 46(02): 170-176. [51] Nguyen B T,Pilitsis J,Golestanirad L. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging[J]. Physics in Medicine & Biology, 2020, 65(18):185007 (13pp). [52] Othman N, Samsuri N A, Rahim M K A, et al. Low specific absorption rate and gain-enhanced meandered bowtie antenna utilizing flexible dipole-like artificial magnetic conductor for medical application at 2.4 GHz[J]. Microwave and Optical Technology Letters, 2020, 62(12): 3881-3889. [53] Hazarika B, Basu B, Nandi A. Design of wideband AMC integrated monopole antenna with enhanced radiation performances for off-body systems[J]. Microwave and Optical Technology Letters, 2020, 63(5): 1458-1463. [54] Hazarika B, Basu B, Nandi A. An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30(12):e22441. [55] Bulla G, De Salles A A, FernáNdez-RodríGuez C. Novel monopole antenna on a single AMC cell for low SAR[J]. International Journal of Microwave and Wireless Technologies, 2020, 12(9): 825-830. |
[1] | LI Jinfeng, ZENG Chao, XIAO Lili, LI Xuefeng, REN Lixia, ZHANG Qinghua, WANG Lijiao. Co-operation between China and Nuclear Energy Agency: review and prospects [J]. RADIATION PROTECTION, 2022, 42(6): 505-517. |
[2] | TANG Hui, XU Bin, WANG Yan, DENG Xiaoqin, GU Hong. Development and application of automatic grasp and security linkage system for radioactive sources in urban radioactive waste repository in Sichuan province [J]. RADIATION PROTECTION, 2022, 42(6): 611-617. |
[3] | PENG Haicheng. Study on the revision of categorization threshod for nuclear safety supervision of nuclear facilities [J]. RADIATION PROTECTION, 2022, 42(4): 368-373. |
[4] | ZHANG Baozeng, DU Xichen, MA Xiao. Measurement and evaluation of electromagnetic radiation of 5G mobile communication base station [J]. RADIATION PROTECTION, 2022, 42(3): 222-228. |
[5] | ZHAN Yulin. A brief introduction of the development of standards for the safe transport of radioactive material in IAEA [J]. RADIATION PROTECTION, 2021, 41(S1): 79-83. |
[6] | ZOU Xumao, WAN Lei, MA Xiaoya, GUO Jianlin, YANG Jue, CUI Jun. Preliminary study on the safety and legal issues of floating nuclear power plants during international transport [J]. RADIATION PROTECTION, 2021, 41(S1): 96-101. |
[7] | ZHANG Xuesheng, GU Jianfeng, CHANG Liangming, ZHAN Lechang, ZHANG Yongxin. Discussion on safety design method for preventing brittle fracture of shipping packages for radioactive material [J]. RADIATION PROTECTION, 2021, 41(S1): 102-106. |
[8] | PAN Yuting, CAO Fangfang, LU Hong, LI Duohong, HONG Zhe. Discussion on technical issues related to safety transport of uranium hexafluoride [J]. RADIATION PROTECTION, 2021, 41(S1): 113-116. |
[9] | LI Yang, LUO Kai, CHEN Yunli. Study on the methodology of the establishment of FEPs list for the near- surface disposal of low and medium level radioactive waste in China [J]. RADIATION PROTECTION, 2021, 41(S1): 122-125. |
[10] | LI Weiming, WEI Yingjing, LI Yin, CHEN Shuangqiang, WANG Mingliang, HAO Shidong. Establishment of γ-ray air kerma (radiotheraph lever) standard device [J]. RADIATION PROTECTION, 2021, 41(S1): 145-150. |
[11] | GUO Cai, QIAO Qingdang, YUE Feng, WANG Ruiying, YANG Duanjie. Guidance and enlightenment to radiological emergency provided by revised Radiological Emergency Plan of MEE (NNSA) [J]. RADIATION PROTECTION, 2021, 41(4): 365-369. |
[12] | ZHAGNG Weihua, MENG Xianqing, YANG Anli, GAO Yuanxun, LIU Zhiqi, GUO Haifeng, DING Zhibo, FENG Jianping. Study on the problems of public communication regarding nuclear safety and its countermeasures [J]. RADIATION PROTECTION, 2021, 41(3): 271-275. |
[13] | XU Yuhai, WANG Guanghong, LI Zhefu, XU Wenzhen, ZHANG Bintuan, LV Jiongjun, YANG Fubin, XIA Xiaobin. Design of beam dump for the commissioning at SHINE facility [J]. RADIATION PROTECTION, 2020, 40(6): 510-515. |
[14] | WANG Liping. Monitoring of gamma radiation level at Shanxi radioactivewaste repository from 2013 to 2018 [J]. RADIATION PROTECTION, 2020, 40(6): 691-695. |
[15] | LI Xingyu, LI Chang, WANG Xuhong, YANG Qiuyu, LV Tao, KANG Baowei, LIU Xiangyu. Discussion on the format and content of safety analysis report for near-surface disposal facility of LILW in China [J]. RADIATION PROTECTION, 2020, 40(5): 450-455. |
|