[1] Jacobson B S. Cataracts in retired actinide-exposed radiation workers[J]. Radiat Prot Dosimetry, 2005,113(1):123-125. [2] Vano E, Kleiman N J, Duran A, et al. Radiation cataract risk in interventional cardiology personnel[J]. Radiat Res, 2010,174(4):490-495. [3] 张彦坤, 李玉静, 张聪瑶, 等. 低剂量辐射对X线工作者晶状体损伤效应探讨[J]. 中国医药导刊, 2016,18(09):869-870. [4] Rastegar N, Eckart P, Mertz M. Radiation-induced cataract in astronauts and cosmonauts[J]. Graefes Arch Clin Exp Ophthalmol, 2002,240(7):543-547. [5] Little M P, Kitahara C M, Cahoon E K, et al. Occupational radiation exposure and risk of cataract incidence in a cohort of US radiologic technologists[J]. Eur J Epidemiol, 2018,33(12):1179-1191. [6] Su Y, Wang Y, Yoshinaga S, et al. Lens opacity prevalence among the residents in high natural background radiation area in Yangjiang, China[J]. J Radiat Res, 2021,62(1):67-72. [7] Ahmadi M, Barnard S, Ainsbury E, et al. Early responses to low-dose ionizing radiation in cellular lens epithelial models[J]. Radiat Res, 2022,197(1):78-91. [8] Barnard S, McCarron R, Moquet J, et al. Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens[J]. Sci Rep, 2019,9(1):10418. [9] Worgul B V, Smilenov L, Brenner D J, et al. Mice heterozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes[J]. Adv Space Res, 2005,35(2):254-259. [10] Dalke C, Neff F, Bains S K, et al. Lifetime study in mice after acute low-dose ionizing radiation: A multifactorial study with special focus on cataract risk[J]. Radiat Environ Biophys, 2018,57(2):99-113. [11] Bains S K, Chapman K, Bright S, et al. Effects of ionizing radiation on telomere length and telomerase activity in cultured human lens epithelium cells[J]. Int J Radiat Biol, 2019,95(1):54-63. [12] De Stefano I, Leonardi S, Casciati A, et al. Contribution of genetic background to the radiation risk for cancer and non-cancer diseases in ptch1+/- mice[J]. Radiat Res, 2022,197(1):43-56. [13] McCarron R A, Barnard S, Babini G, et al. Radiation-induced lens opacity and cataractogenesis: A lifetime study using mice of varying genetic backgrounds[J]. Radiat Res, 2022,197(1):57-66. [14] Tanno B, Babini G, Leonardi S, et al. miRNA-signature of irradiated ptch1+/- mouse lens is dependent on genetic background[J]. Radiat Res, 2022,197(1):22-35. [15] Ainsbury E A, Barnard S, Bright S, et al. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research[J]. Mutat Res Rev Mutat Res, 2016,770(Pt B):238-261. [16] Stewart F A, Akleyev A V, Hauer-Jensen M, et al. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—Threshold doses for tissue reactions in a radiation protection context[R].ICRP Publication 118. Ann ICRP, 2012,41(1-2):1-322. [17] Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence[J]. Int J Radiat Biol, 2017,93(10):1024-1034. [18] Markiewicz E, Barnard S, Haines J, et al. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape[J]. Open Biol, 2015,5(4):150011. [19] Vigneux G, Pirkkanen J, Laframboise T, et al. Radiation-induced alterations in proliferation, migration, and adhesion in lens epithelial cells and implications for cataract development[J]. Bioengineering (Basel), 2022,9(1):29. [20] Bahia S, Blais E, Murugkar S, et al. Oxidative and nitrative stress-related changes in human lens epithelial cells following exposure to X-rays[J]. Int J Radiat Biol, 2018,94(4):366-373. [21] Wolf N, Pendergrass W, Singh N, et al. Radiation cataracts: mechanisms involved in their long delayed occurrence but then rapid progression[J]. Mol Vis, 2008,14:274-285. [22] Zhang S, Shuai L, Wang D, et al. Pim-1 protects retinal ganglion cells by enhancing their regenerative ability following optic nerve crush[J]. Exp Neurobiol, 2020,29(3):249-272. [23] Katakami N, Kaneto H, Hao H, et al. Role of Pim-1 in smooth muscle cell proliferation[J]. J Biol Chem, 2004,279(52):54742-54749. [24] Mohammad G, Siddiquei M M, Alam K, et al. High-mobility group Box-1 regulates the expression of matrix metalloproteinase-9 in diabetic retina[J]. Int J Clin Exp Pathol, 2016(9):828-840. [25] Yeung C K, Wang G, Yao Y, et al. BRE modulates granulosa cell death to affect ovarian follicle development and atresia in the mouse[J]. Cell Death Dis, 2017,8(3):e2697. |