›› 2016, Vol. 42 ›› Issue (5): 1-.doi: 10.3969/j.issn.1674-1579.2016.05.001
Previous Articles Next Articles
Online:
2016-10-20
Published:
2016-11-06
CLC Number:
WANG Da-Yi, LI Mao-Deng, HUANG Xiang-Yu. Review of the Mars Atmospheric Entry Autonomous Navigation Technology[J]., 2016, 42(5): 1-.
[1]王大轶, 黄翔宇. 深空探测自主导航与控制技术综述[J].空间控制技术与应用, 2009, 35(3): 612. WANG D Y,HUANG X Y.Survey of autonomous navigation and control for deep space exploration[J].Aerospace Contrd and Application, 2009, 35(3): 612. [2]欧阳自远, 李春来, 邹永廖, 等. 深空探测的进展与我国深空探测的发展战略[J].中国航天, 2002(12): 2832. OUYANG Z Y,LI C L,ZOU Y L,et al.Progress of deep space exploration and chinese deep space exploration strategy[J].Aerospace China, 2002(12): 2832. [3]崔平远, 于正湜, 朱圣英. 火星进入段自主导航技术研究现状与展望[J].宇航学报, 2013, 34(4): 447456. CUI P Y,YU Z T,ZHU S Y.Research progress and prospect of autonomous navigation techniques for mars entry phase[J].Journal of Astronautics, 2013, 34(4): 447456. [4]崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J].深空探测学报, 2014, 1(1): 1828. CUI P Y, GAO A, YU Z T. Research progress of autonomous navigation scheme for mars landing[J].Journal of Deep Space Exploration, 2014, 1(1): 1828. [5]WONG E C, MASCIARELLI J, SINGH G. Autonomous guidance and control design for hazard avoidance and safe landing on Mars[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Washington D.C.: AIAA, 2002. [6]Lévesque JF. Advanced navigation and guidance for highprecision planetary landing on Mars[R]. Department of electrical engineering. 2006. [7]徐超, 王大轶, 黄翔宇. 基于陆标图像的火星精确着陆自主导航方法研究[J]. 深空探测学报, 2016, 3(2): 150155. XU C, WANG D Y, HUANG X Y. Autonomous navigation for Mars pinpoint landing based on landmark image[J]. Journal of Deep Space Exploration, 2016, 3(2): 150155. [8]李建军, 王大轶. 一种图像辅助火星着陆段自主导航方法[J].宇航学报, 2016, 37(6): 687694. LI J J,WANG D Y.An imagebased autonomous navigation method for precise landing on Mars[J].Journal of Astronautics, 2016, 37(6): 687694. [9]王大轶, 徐超, 黄翔宇. 深空探测着陆过程序列图像自主导航综述[J].哈尔滨工业大学学报, 2016, 4: 002. WANG D Y,XU C,HUANG X Y.Overview of autonomous navigation based on sequential images for planetary landing[J].Journal of Harbin Institute of Technology, 2016, 4: 002. [10]张晓文, 李骥, 黄翔宇, 等. 基于陆标图像的天体定点着陆信息融合导航方法[J].空间控制技术与应用, 2014,40(6): 1015. ZHANG X W, LI J, HUANG X Y, et al. Informationfusionintegrated navigation for celestial body pinpoint landing based on landmark image[J].Aerospace Control and Application,2014,40(6): 1015. [11]王大轶, 黄翔宇, 关轶峰, 等.基于IMU配以测量修正的月球软着陆自主导航研究[J].宇航学报, 2007, 28(6): 15441549. WANG D Y,HUANG X Y,GUAN Y F,et al.Research on the autonomous navigation based on measurementupdated IMU for lunar soft landing[J].Journal of Astronautics, 2007, 28(6): 15441549. [12]MORABITO D. The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres[R]. IPN Progress Report, 2002. [13]LI S, PENG Y. Radio beacons/IMU integrated navigation for Mars entry[J].Advances in Space Research, 2011, 47(7): 12651279. [14]LIGHTSEY E G, MOGENSEN A E, BURKHART P D, et al. Realtime navigation for Mars missions using the Mars network[J].Journal of Spacecraft and Rockets, 2008, 45(3): 519533. [15]SAN MARTIN A M,LEE S W, WONG E C. The development of the MSL guidance, navigation, and control system for entry, descent, and landing. 2013. [16]EULER E. Navigating the Viking landers[J]. Navigation, 1978, 25(1): 1118. [17]DESAI P N, PRINCE J L, QUEEN E M, et al. Entry, descent, and landing performance of the mars phoenix lander[J].Journal of Spacecraft and Rockets, 2011, 48(5): 798808. [18]BURKHART P D, ELY T, DUNCAN C, et al.Expected EDL navigation performance with spacecraft to spacecraft radiometric data[C]//Jet Propulsion Laboratory, National Aeronautics and Space Administration. Pasadena, CA, 2005. [19]MARSCHKE J M, CRASSIDIS J L, LAM Q M. Multiple[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Washington D.C.: AIAA, 2008. [20]HEYNE M C, Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank[D]. The University of Texas at Austin, 2007. [21]邓剑峰, 高艾, 崔平远. 基于分层大气模型的火星进入段精确导航滤波方法[C]//深空探测技术专业委员会第十届学术年会论文集. 北京:中国宇航学会,2013. [22]伍凯, 崔平远, 崔祜涛. 基于多模型自适应估计的火星大气层进入段导航方法[C]//深空探测技术专业委员会第九届学术年会论文集 (上册). 北京:中国宇航学会,2012. [23]ZANETTI R,BiSHOP R. Adaptive entry navigation using inertial measurements[J].Advances in the Astronautical Sciences, 2007, 127(1): 457462. [24]DUBOISMATRA O, BISHOP R H. Multimodel navigation with gating networks for mars entry precision landing[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Washington D.C.: AIAA, 2004. [25]MARSCHKE J M,CRASSIDIS J L,LAM Q M. Multiple model adaptive estimation for inertial navigation during Mars entry[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Washington D.C.: AIAA, 2008. [26]陈晓, 张伟, 彭玉明.基于器间测量的火星进入过程实时高精度导航[J].航天返回与遥感, 2013, 33(6): 1723. CHEN X, ZHANG W, PENG Y M. Mars entry realtime navigation based on orbiter tracking data[J].Spacecraft Recovery & Remote Sensing, 2013, 33(6): 1723. [27]崔平远, 窦强, 高艾. 火星大气进入段通信“黑障”问题研究综述[J].宇航学报, 2014, 35(1): 213. CUI P Y,DOU Q,GAO A.Review of communication blackout problems encountered during mars entry phase[J].Journal of Astronautics, 2014, 35(1): 213. [28]YU Z,CUI P,ZHU S.On the observability of Mars entry navigation using radiometric measurements[J]. Advances in Space Research, 2014, 54(8): 15131524. [29]韩婷婷, 史弦, 简念川, 等.火星全球导航卫星系统[J].航天器工程, 2011, 20(2): 1419. HAN T T,SHI X,JIAN N C,et al.Preliminary design of the constellation distribution for a proposed Mars GNSS[J].Spacecraft Engineering, 2011, 20(2): 1419. [30]韩婷婷, 平劲松, 史弦,等.月球与火星的全球导航卫星系统星座初步设计分析[C]//深空探测技术专业委员会第七届学术年会论文集.北京:中国宇航学会,2010. [31]PASTOR P, GAY R S, STRIEPE S A, et al. Mars entry navigation from EKF processing of beacon data[C]//AIAA/AAS Astrodynamics Specialist Conference. Washington D.C.: AIAA, 2000. [32]YU Z, CUI P, ZHU S. Observabilitybased beacon configuration optimization for Mars entry navigation[J]. Journal of Guidance, Control, and Dynamics, 2014: 18. [33]王轶博. 着陆器在火星大气进入段的自主导航方法研究[D]. 哈尔滨:哈尔滨工业大学,2011. [34]BRUNNER T, LAUFFENBURGER JP, CHANGEY S ,et al. Quaternionbased IMU and stochastic error modeling for intelligent vehicles[C]//The 2015 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2015. [35]FU H, YANG Y, XIAO Q, et al. Autonomous navigation method based on unbiased minimumvariance estimation during Mars entry[J].Advances in Space Research, 2015, 55: 15121528. [36]LOU T, FU H, ZHANG Y, et al. Consider unobservable uncertain parameters using radio beacon navigation during Mars entry[J]. Advances in Space Research, 2014, 55: 10381054. [37]柏楠, 苑景春, 王希洋, 等. 空天飞行器大气传感技术研究[J].飞航导弹, 2014(6): 39. [38]INGOLDBY R, MICHEL F, FLAHERTY T, et al. Entry data analysis for Viking Landers 1 and 2[R]. NASA CR159388, 1976. [39]KARLGAARD C D, BECK R E, O’Keefe S A, et al.Mars entry atmospheric data system modeling and algorithm development[R].AIAA Paper, 2009, 3916. [40]BRENT R C, WHITMORE S A, ROBACK V E. Flush Airdata Sensing System Calibration Procedures and Results for Blunt Forebodies. 1999. [41]PRUETT C D, WOLF H,HECK M L, et al. Innovative air data system for the space shuttle orbiter[J].Journal of Spacecraft and Rockets, 1983, 20(1): 6169. [42]DUTTA S,BRAUN R D, KARLGAARD C D. Atmospheric data system sensor placement optimization for Mars entry, descent, and landing[J]. Journal of Spacecraft and Rockets, 2013, 51(1): 163174. [43]SIEMERS P M. Air data system optimization using a genetic algorithm. 1992. [44]DUTTA S, BRAUN R D, CramérRao LowerBound Optimization of Flush Atmospheric Data System Sensor Placement[J].Journal of Spacecraft and Rockets, 2014, 51(6): 17731788. [45]李其畅, 刘劲帆, 刘昕, 等. 嵌入式大气数据三点解算方法初步研究[J].空气动力学学报, 2014, 32(3): 360363. LI Q C, LIU J F, LIU X, et al. The primary study of 3point calculation method for the flush air data system[J].Acta Aerodynamica Sinica, 2014, 32(3): 360363. [46]WANG D Y, LI M D,HUANG X Y. Analytical solutions of generalized triples algorithm for flush airdata sensing systems[C]//Guidance, control and dynamics, 2016 (accepted). [47]WEISS S. Comparing three algorithms for modeling flush air data systems[C]//AIAA, 2002. 535. [48]孟博.跨音速/高超音速大气数据测量技术研究[D]. 南京:南京航空航天大学,2011. [49]ROHLOFF T J,WHITMORE SA,CATTON I.Faulttolerant neural network algorithm for flush air data sensing[J].Journal of Aircraft, 1999, 36(3): 541549. [50]赵磊, 陆宇平.基于 RBF 神经网络的 FADS 系统及其算法研究[J].飞机设计, 2012(1): 4347. [51]KARLGAARD C D, KUTTY P, SCHOENENBERGER M, et al.Mars science laboratory entry atmospheric data system trajectory and atmosphere reconstruction[J].Journal of Spacecraft and Rockets, 2014, 51(4): 10291047. [52]DUTTA S, BRAUN R D, RUSSELL R P, et al.Comparison of statistical estimation techniques for mars entry, descent, and landing reconstruction[J].Journal of Spacecraft and Rockets, 2013, 50(6):12071221. [53]BAUMANN E,PAHLE J W, DAVIS M C,er al. X43A flush airdata sensing system flighttest results[J].Journal of Spacecraft and Rockets, 2010, 47(1): 4861. [54]叶玮, 郑守铎, 温瑞珩. FADS/INS组合法迎角, 侧滑角测量方法研究[J].飞机设计, 2008. 27(6): 1418. [55]宋述杰, 邓建华. 应用INS/GPS系统数据估计迎角和侧滑角的方法研究[J].西北工业大学学报, 2005, 23(2): 231234. SONG S J, DENG J H. Applying colgren’s idea to accurately estimating angleofattack and sideslip angle using INS/GPS system data[J].Journal of northwestern polytechnical university, 2005, 23(2): 231234. [56]杨雨, 陆宇平, 吴在桂. 嵌入式大气数据传感系统中的组合滤波技术[J].传感器与微系统, 2009, 28(5): 117120. |
[1] | HUANG Jian-Bin, HUANG Long-Fei, HAN Xu, MENG Bo, LI Zhi, WANG Wen-Long, LI Wen. [J]. , 2018, 44(5): 30-37. |
[2] | HAN Dong, HUANG Pan-Feng, LIU Xi-Yao. [J]. , 2018, 44(5): 38-46. |
[3] | LIU Miao, LI Zhong-Kui. [J]. , 2018, 44(5): 47-54. |
[4] | SUN Yun-Long, YUAN Chang-Qing, LI Zheng-Guang. [J]. , 2018, 44(4): 16-25. |
[5] | HU Jin-Chang, ZHANG Hong-Hua, WANG Ze-Guo, CHEN Shang-Shang. [J]. , 2018, 44(4): 56-60. |
[6] | SU Shao-Kan, PENG Bo, WANG Li-Wei, ZHENG Wei, CHANG Tao, CHEN Ming-Yang. [J]. , 2018, 44(4): 72-78. |
[7] | ZHAO Shuang, ZHANG Ya-Sheng, DAI Hua-Yu, QI Yue- . Failure Performance and Reconstruction Method of Satellite Navigation System [J]. , 2018, 44(2): 49-55. |
[8] | SUN Xiu-Qing, ZHANG Du-Zhou, WANG Li, WU Fen-Zhi. An Improved Method of Projector Calibration [J]. , 2018, 44(2): 62-66. |
[9] | WANG Tong-Lei, CHEN Chao-Hui- . A Method of Analyzing and Localizing Software Vulnerability Automatically [J]. , 2018, 44(2): 73-78. |
[10] | SUI Jie, CHENG Hui-Yan, YU Cheng-Wu, WU Yan-Peng, WANG Xiao-Yan, ZHENG Ran. A Thermal Stability Analysis and Simulation Method for Boresight Axis of Star Sensor [J]. , 2017, 43(4): 37-41. |
[11] | LI Tao, WU Yun. Measurement Technology Based on Stereo Vision for NonCooperative Targets [J]. , 2017, 43(4): 52-56. |
[12] | WU Fen-Zhi, GUO Shao-Gang, ZHU Fei-Hu, WANG Li, WU Yun, LIU Da. TwoStep Calibration Method of Lidar Sensor Based on Calibration Field [J]. , 2017, 43(4): 57-62. |
[13] | CHEN Jian-Feng, YU Cheng-Wu, CHENG Hui-Yan, SUI Jie, WU Yan-Peng. An Optimal Design of Star Tracker Baffle Based on Bipod Structure [J]. , 2017, 43(4): 68-72. |
[14] | CHENG Hui-Yan, ZHONG Hong-Jun, WANG Long, YANG Jun, ZHENG Ran. A Fast Algorithm of AllSky Star Map Automated Identification [J]. , 2017, 43(4): 73-78. |
[15] | WANG Fei, YUAN Jian-Ping, YUAN Jing. Formation Keeping and Reconfiguration for Solar Sail Spacecraft [J]. , 2017, 43(3): 7-14. |