中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用

• 论文与报告 • 上一篇    下一篇

一种基于AUKF的航天器自主导航算法

范 炜1,2,李 勇3   

  1. 1.北京控制工程研究所,北京 100190;2.空间智能控制技术国家级重点实验室,北京 100190 ;
    3. 中国空间技术研究院研究发展中心, 北京 100094
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-06-26 发布日期:2009-06-26

An Adaptive Unscented Kalman Filter Based Spacecraft Autonomous Navigation Algorithm

FAN Wei 1,2, LI Yong3   

  1. 1. Beijing Institute of Control Engineering, Beijing 100190, China;
    2. National Laboratory of Space Intelligent Control, Beijing 100190, China;
    3. R&D Center, China Academy of Space Technology, Beijing 100094, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-06-26 Published:2009-06-26

摘要: 将非线性Sage-Husa噪声估计器与无迹滤波器(UKF)相结合,提出了一种新型的自适应无迹滤波器(AUKF).对基于AUKF的航天器自主导航系统进行了计算机仿真,仿真结果表明,对于存在测量偏差的自主导航系统,AUKF的导航滤波精度较传统的扩展卡尔曼滤波器(EKF)有显著的提高.进而,针对航天器自主导航系统测量偏差周期时变的特点,提出了提高偏差估计精度的改进算法.仿真结果表明,在适当增加计算量的条件下,利用偏差估计改进算法的AUKF能够进一步提高自主导航系统的导航精度.

关键词: 自主导航, 扩展卡尔曼滤波, 自适应无迹滤波器, Sage-Husa噪声估计器

Abstract: A new approach called as adaptive unscented Kalman filter (AUKF) for nonlinear filtering systems is presented in this paper. This method combines nonlinear Sage-Husa noise statistics estimator with unscented Kalman filter (UKF). Then AUKF is applied to the spacecraft autonomous navigation. The computer simulation results demonstrate that the navigation accuracy using AUKF is much better than using EKF. And a new algorithm to improve measurement bias estimate precision by using periodic information of the measurement bias is proposed. The autonomous navigation system simulation results show that with a little more computing time the improved AUKF using the new measurement bias estimate algorithm is more accurate than AUKF.

Key words: autonomous navigation, extended Kalman filter, adaptive unscented Kalman filter, Sage-Husa noise statistics estimator

中图分类号: 

  • V448.22+4