中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2022, Vol. 48 ›› Issue (5): 105-115.doi: 10.3969/j.issn.1674 1579.2022.05.012

• 论文与报告 • 上一篇    下一篇

一种基于深度学习的光学遥感影像在轨目标检测方法

  

  1. 西安空间无线电技术研究所
  • 出版日期:2022-10-26 发布日期:2022-11-02
  • 基金资助:
    国家自然科学基金资助项目(62171342)

An On Orbit Object Detection Method Based on Deep Learning for Optical Remote Sensing Image

  • Online:2022-10-26 Published:2022-11-02

摘要: 针对遥感影像复杂的目标成像特性,采用传统的目标检测算法准确率低、鲁棒性不够的问题,提出了一种基于深度学习的光学遥感影像在轨目标检测方法.在硬件层面,设计了大规模可编程逻辑器件FPGA与多核DSP为构架的星上硬件处理平台,支持在轨目标检测网络参数上注重构功能,实现深度学习模型性能不断优化.在软件层面,采用模块化、参数化和并行流水等设计思想的软件架构和数据流,有效提升了算法实现的效率和可移植性.在算法层面,该方法在YOLOv3特征提取网络(DarkNet 53)的基础上引入深度分离卷积(depthwise separable convolution)以有效压缩模型参数与推理计算量.在检测阶段加入局部再检测模块以提升算法对密集目标的适应性.硬件实测结果表明,与目前常用的目标检测方法相比,该方法在处理速度和精度上都有较大的提升,目标检测精度高于90%,单元处理速度达到334.24FPS.同时支持飞机、舰船、车辆等典型目标的检测,为型号应用奠定基础.

关键词: 遥感影像, 目标检测, 深度学习, YOLOv3, FPGA

Abstract: Aiming at the complex target imaging characteristics of remote sensing images, the traditional object detection and recognition technology has the problems of low accuracy and insufficient robustness. An on orbit object detection method is proposed in this paper based on deep learning for optical remote sensing image. At the hardware level, this method uses FPGA and multi core DSP to build an on board hardware processing platform, which can update the on orbit object library and optimize the performance of the deep learning model. At the algorithmic level, this method introduces deep separation convolution based on YOLOv3 feature extraction network(Darknet 53) to effectively compress model parameters and inference computation. In the detection stage, a local re detection module is added to improve the adaptability of the algorithm to dense targets. Compared with the current object detection methods, this method has a great improvement in processing speed and accuracy, the detection accuracy of the target is higher than 90%, and the unit processing speed reaches 334.24FPS. At the same time, it supports the detection of aircraft, ships, vehicles and other typical targets, laying a foundation for model application.

Key words: remote sensing image, target detection, deep learning, YOLOv3, FPGA

中图分类号: 

  • TP391