中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2022, Vol. 48 ›› Issue (5): 67-77.doi: 10.3969/j.issn.1674 1579.2022.05.008

• 论文与报告 • 上一篇    下一篇

在轨目标检测模型结构化条带剪枝

  

  1. 西北工业大学计算机学院
  • 出版日期:2022-10-26 发布日期:2022-11-02
  • 基金资助:
    国家重点研发计划资助项目(2020YFB1808003),中国航天科技集团公司创新基金(Y20 JTKJCX 02)和国家重点实验室基金(6142411432107)

Structure Stripe Pruning for On board Object Detection

  • Online:2022-10-26 Published:2022-11-02

摘要: 针对基于卷积神经网络的目标检测算法在轨应用时因其存储复杂度和计算复杂度高而难以实现在轨部署的问题,提出一种结构化条带剪枝算法来实现目标检测模型压缩.使用条带剪枝方法获得卷积核骨架矩阵;对骨架矩阵中的元素进行排序,按照剪枝比例将对应骨架矩阵中较小的元素剪去,从而使得卷积核结构化;采用混合精度训练方法获得结构化条带剪枝模型.分别在NWPU VHR 10数据集和自建数据集上对所提出的结构化条带剪枝算法进行了验证.该算法可以使得参数压缩比达到1.97倍,加速比达到1.68倍,且mAP在NWPU VHR 10数据集上仅下降了0.9%,在自建数据集上仅下降了1.7%.实验结果表明,本文所提出的结构化剪枝方法能够有效实现目标检测模型的压缩.

关键词: 目标检测, 卷积神经网络, 深度学习, 模型压缩, 剪枝

Abstract: Object detection algorithms based on convolutional neural networks are difficult to deploy onboard due to their high storage complexity and computational complexity. To address the problems a structured strip pruning algorithm to achieve object detection model compression is proposed in this paper. First, the strip pruning algorithm is used to obtain the convolutional kernel skeleton matrix. Then the elements in the skeleton matrix are sorted and the smaller elements in the corresponding skeleton matrix are pruned according to the pruning ratio to make the convolutional kernel structured. Finally, a mixed precision training method is used to obtain the structured strip pruning model. The proposed structured strip pruning algorithm is evaluated on the NWPU VHR 10 dataset and our dataset respectively. The algorithm can achieve a parameter compression rate of 1.97 times and a speedup ratio of 1.68 times, and the mAP decreases only 0.9% on the NWPU VHR 10 dataset and 1.7% on our dataset. Experimental results show that the structured pruning method can effectively achieve the pruning of the object detection model.

Key words: object detection, convolution neural network, deep learning, model compression, pruning

中图分类号: 

  • TP389.1