中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2022, Vol. 48 ›› Issue (5): 56-66.doi: 10.3969/j.issn.1674 1579.2022.05.007

• 论文与报告 • 上一篇    下一篇

基于深度神经网络的航天器反交会逃逸方法

  

  1. 北京航空航天大学宇航学院
  • 出版日期:2022-10-26 发布日期:2022-11-01
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目和空间智能控制技术实验室开放基金课题资助项目(6142208190306)

Anti Rendezvous Evasion of Spacecraft Based on Deep Neural Networks

  • Online:2022-10-26 Published:2022-11-01

摘要: 针对空间近距离非合作交会,提出一种基于深度神经网络(DNN)的航天器智能反交会逃逸方法.首先建立了描述逃逸脉冲优化的双层数学规划(MP)问题模型;然后,选定神经网络的输入与输出,根据前述建立的模型,通过粒子群优化(PSO)算法计算不同相对状态下的最优逃逸脉冲,构建样本集;最后,设计神经网络并进行训练,通过比较学习效果合理选择网络的超参数.仿真结果表明,充分训练后的深度神经网络可以高精度地快速生成逃逸脉冲,并具有较好的泛化性能,可满足轨道博弈中对逃逸机动计算快速性和实时性的要求,为反交会逃逸提供了一种智能化手段.

关键词: 非合作交会, 逃逸脉冲, 数学规划问题, 深度神经网络(DNN), 智能化

Abstract: An intelligent framework based on deep neural networks (DNNs) is proposed to achieve the evasive impulse for spacecraft against close proximity non cooperative rendezvous. First, a double layer mathematical programming (MP) model is established to describe the evasive impulse optimization problem. Then, the input and output parameters of DNNs are carefully selected. Based on the double layer MP model, a dataset is established by using the particle swarm optimization (PSO) algorithm to obtain optimal evasive impulses under different relative states. Finally, DNNs are designed and trained, and the hyper parameters of networks are elaborately chosen by evaluating the learning performances. Simulation results indicate that well trained DNNs can calculate optimal evasive impulses with a high precision and a fast speed. Our approach can promote the intelligentization of on orbit evasion and efficiently improve the survivability of spacecraft in the orbital game.

Key words: non cooperative rendezvous, evasive impulse, mathematical programming, deep neural network (DNN), intelligentization

中图分类号: 

  • V448.21