中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2024, Vol. 50 ›› Issue (2): 83-92.doi: 10.3969/j.issn.1674 1579.2024.02.009

• 论文与报告 • 上一篇    下一篇

一种基于FPGA的深度神经网络硬件加速器系统

  

  1. 北京交通大学
  • 出版日期:2024-04-26 发布日期:2024-05-16
  • 基金资助:
    国家自然科学基金重点项目(61532005)和空间可信计算与电子信息技术实验室开放基金(OBCandETL202206)

An FPGA-Based Hardware Accelerator System for Deep Neural Networks

  • Online:2024-04-26 Published:2024-05-16

摘要: 深度神经网络目标检测算法计算复杂度高、模型复杂,对硬件平台的算力有很高需求,针对以上问题,设计了一种基于现场可编程门阵列(field programmable gate array,FPGA)芯片的硬件专用加速器.通过软硬件协同方法,设计具有高并行度及深度流水的片上架构,并使用模型量化、结构优化等方法对神经网络模型进行优化.在所设计的加速器系统中进行神经网络目标检测算法的部署,实现了高数据吞吐率、低功率消耗的FPGA神经网络计算,且模型精度损失低于1.2%,为在低能耗嵌入式平台上部署深度神经网络目标检测算法提供了有效解决方案,可广泛应用于机载、星载智能计算设备.

关键词: FPGA, 神经网络, 硬件加速器, 目标检测

Abstract: In response to the high computational complexity and model intricacy of deep neural network object detection algorithms, as well as the substantial demand for computational power on hardware platforms, a hardware specific accelerator based on Field Programmable Gate Array (FPGA) chips is designed. Employing a collaborative approach between software and hardware, an on chip architecture with high parallelism and deep pipelining is devised. Additionally, the techniques such as model quantization and structural optimization are utilized to optimize the neural network model. Deploying the object detection algorithm of neural networks within the designed accelerator system achieves high data throughput and low power consumption for FPGA based neural network computation, with model precision loss below 1.2%. This provides an effective solution for deploying deep neural network object detection algorithms on low power embedded platforms and can be widely applied in airborne and spaceborne intelligent computing devices

Key words: FPGA, neural network, hardware accelerator, target detection

中图分类号: 

  • V443