中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2024, Vol. 50 ›› Issue (2): 70-82.doi: 10.3969/j.issn.16741579.2024.02.008

• 论文与报告 • 上一篇    下一篇

边界辅助监督的轻量化卫星部件语义分割网络

  

  1. 华东理工大学
  • 出版日期:2024-04-26 发布日期:2024-05-16
  • 基金资助:
    国家自然科学基金资助项目(62272164和62306113)和空间智能控制技术实验室开放基金(HTKJ2022KL502010)

Edge Auxiliary Supervised Satellite Components Segmentation Network

  • Online:2024-04-26 Published:2024-05-16

摘要: 空间卫星部件的准确分割对于在轨对接及维修等具有重要意义,然而太空场景的特殊性导致卫星及其部件和太空背景的像素数量差异悬殊,同时不同部件在相邻区域难以区分.本文提出边界辅助监督的轻量化卫星部件语义分割网络(edge auxiliary supervised components segmentation network,EASCSN),经过双分支结构提取多尺度特征和全局语义信息,并以级联形式将语义信息注入到空间特征中,采用多尺度特征聚合解码器处理编码器特征并完成部件分割.此外,为了提高网络边界感知能力,增加边界监督策略辅助训练.在公开数据集的定性与定量实验证明,本方法能在实时且轻量的前提下准确完成卫星部件语义分割,其中平均交并比达到74.74%,平均准确率达到80.99%,计算量和参数量仅为6.08GFLOPS(giga floating point operations per second)和5.45M,在NVIDIA Tesla T4 GPU上分割速度能够达到43.29帧每秒.高效的卫星部件识别具有辅助感知目标卫星结构和完成空间任务的应用价值,并具备推广星上计算机的潜力.

关键词: 卫星部件, 语义分割, 轻量化, 边界监督

Abstract: Precise segmentation of satellite components is key to RPO (rendezvous and proximity operations) and OOS (on orbit servicing), while harsh space environment and compact layout of components hinder fine grained pixel wise recognition. An edge auxiliary supervised components segmentation network (EASCSN) is proposed to tackle these problems. First, a two branch encoder is designed where pyramidal spatial features and global semantic features are fused with gated semantic injection module in a cascade manner. Second, a slim but strong decoder with convolution free feature aggregation module is elaborately designed so that high quality parts of multi-scale features are distilled and aggregated. Meanwhile, an auxiliary edge supervised strategy is adopted during training for sharper prediction in the edge regions. Massive experiments demonstrate the superiority of the proposed EASCSN. With compact model size and low computation cost, EASCSN can achieve a new state of the art speed accuracy tradeoff. Specifically, on a single Tesla T4 GPU, EASCSN yields 74.74% mIoU and 80.99% mAcc at 43.29 FPS on UESD test set. Efficient satellite components recognization helps perceive structure of target satellites and achieve space intelligent control. There is potential value of being further deployed to spaceborne platforms.

Key words: satellite components, semantic segmentation, light weight design, edge supervision

中图分类号: 

  • V1