中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 1-8.doi: 10.3969/j.issn.1674 1579.2023.04.001

• 论文与报告 •    下一篇

基于DDPG的航天器性能-故障关系图谱推理方法研究

  

  1. 北京控制工程研究所
  • 出版日期:2023-08-26 发布日期:2023-09-19
  • 基金资助:
    国家自然科学基金资助项目(62022013)和国家重点研发计划资助(2021YFB1715000)

A Spacecraft Fault Diagnosis Method Based on Graph Attention Network and DDPG Algorithm

  • Online:2023-08-26 Published:2023-09-19

摘要: 对深度确定性策略算法进行改进,结合图注意力网络,提出将知识与人工智能结合的航天器故障推理方法.在构建航天器部件级知识图谱的基础上,根据航天器知识图谱的结构、语义配置强化学习的环境,设置独特的奖励函数、策略网络与价值网络.针对航天器知识图谱的图结构数据特性,引入图注意力机制进行更为准确的故障定位.模拟故障发生情况进行实验验证,实验结果表明该方法能够由测点与测点特征出发进行反向故障推理,获得故障路径,快速自主定位发生故障的功能模块与故障模式.

关键词: 航天器, 故障诊断, 深度强化学习, 图神经网络

Abstract: In this paper, we improve the deep deterministic policy gradient algorithm and combine the graph attention network to propose a spacecraft fault diagnosis method. Based on the construction of spacecraft system level and component level knowledge graphs, a unique reward function, policy network and value network are set up according to the structure of spacecraft knowledge graphs and the semantic configuration of reinforcement learning environment. Based on the construction of spacecraft system level and component level knowledge graphs, unique reward functions, environments, policy networks and value networks are set according to the structure and semantics of spacecraft knowledge graphs. We use in orbit data for experimental validation, and the experimental results show that the method can combine systemlevel knowledge graph with component level knowledge graph for hierarchical, fast and accurate fault diagnosis.

Key words: spacecraft, fault diagnosis, deep reinforcement learning, graph neural network

中图分类号: 

  • TP181