中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (2): 20-29.doi: 10.3969/j.issn.1674 1579.2023.02.003

• 论文与报告 • 上一篇    下一篇

月面起飞快速交会远程导引制导律设计

  

  1. 北京控制工程研究所
  • 出版日期:2023-04-26 发布日期:2023-05-15
  • 基金资助:
    国家自然科学基金(U20B2054)和智能制造专项行动计划(JCKY2018203A001)

Guidance Design of Quick Far Range Rendezvous for Lunar Take Off

  • Online:2023-04-26 Published:2023-05-15

摘要: 针对月面起飞后的快速交会远程导引任务,设计一种基于高斯摄动方程的双脉冲制导策略.首先推导了轨道修正的控制方程,然后结合远程导引的时间约束方程推导出了双脉冲制导的非线性方程组.为了获得速度增量最小解,设计规划变量,将非线性方程组的求解问题转化为非线性规划问题,并通过序列二次规划算法对最优解进行求解.为了提高制导精度,采用迭代修正的方法对制导过程进行优化.最后,通过数据仿真,对基于高斯摄动方程的双脉冲制导策略的正确性进行校验,并与Lambert直接转移策略进行了比对.仿真结果表明,相比于Lambert直接转移制导策略,基于高斯摄动方程的双脉冲制导策略可以有效地完成快速交会远程导引任务,制导精度和燃料消耗得到了改善.

关键词: 月球轨道快速交会远程导引, 高斯摄动方程, 非线性规划, Lambert制导

Abstract: A double pulse guidance strategy based on Gaussian perturbation equation is designed for the quick far range rendezvous task after lunar take off. Firstly, the control equation of the orbit correction is derived, and then the double pulse guidance nonlinear equation group is derived by combining the constraint equation of far range rendezvous time. In order to obtain the minimum solution of speed increment, the problem of solving nonlinear equations is transformed into a nonlinear programming problem by designing programming variables, and the optimal solution is solved by sequential quadratic programming algorithm (SQP). In addition, in order to improve the guidance accuracy, the iterative correction method is used to optimize the guidance process. Finally, the correctness of the double pulse guidance strategy based on Gaussian perturbation equation is verified by data simulations, and compared with Lambert double pulse guidance strategy. The simulation results show that the double pulse guidance strategy based on Gaussian perturbation equation can effectively complete the quick far range rendezvous task, and the guidance accuracy and fuel consumption are better than Lambert double pulse guidance strategy.

Key words: quick far range rendezvous of lunar orbits, gaussian perturbation equation, nonlinear programming, lambert guidance

中图分类号: 

  • V448.23