中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2024, Vol. 50 ›› Issue (3): 11-22.doi: 10.3969/j.issn.1674 1579.2024.03.002

• 论文与报告 • 上一篇    下一篇

基于空间目标定向观测的飞行器导航方法研究

  

  1. 北京控制工程研究所
  • 出版日期:2024-06-25 发布日期:2024-09-27
  • 基金资助:
    国家自然科学基金资助项目(62394354)

Navigation Method Based on Space Target LOS Measurement for Aerial Vehicles

  • Online:2024-06-25 Published:2024-09-27

摘要: 本文主要研究基于定向观测星相机和惯性测量单元(inertial measurement unit, IMU)信息融合的飞行器高精度导航方法.在已有导航方式中,惯性导航系统(inertial navigation system, INS)/全球导航卫星系统(global navigation satellite system, GNSS)组合导航在无线电信号拒止环境中存在性能下降的风险,传统INS/天文导航系统(celestial navigation system, CNS)组合导航能够抑制惯性测量单元中的陀螺漂移,但不能有效消除加速度计零偏的影响.针对上述问题,提出一种基于空间目标定向观测的飞行器自主导航新方法,在飞行器上配置星相机对星历已知的空间目标和背景恒星的视线方向(line of sight, LOS)进行观测,利用IMU进行状态预测,通过扩展卡尔曼滤波器(extended Kalman filter, EKF)获得载体位置、速度和姿态的估计值,同时,对惯性器件测量偏差进行校准.设计了基于克拉美劳下界(Cramer Rao lower bound, CRLB)的观测目标优化选取策略,通过空间目标可见性分析、导航系统可观度分析以及导航滤波器数学仿真验证了所提方法的有效性.

关键词: 飞行器, 导航, 空间目标, 优化选取, 卡尔曼滤波器

Abstract: This paper focuses on the high accuracy navigation method based on the information fusion of star camera and inertial measurement unit (IMU) for aerial vehicles. Among the existing navigation methods for aerial vehicles, the integrated navigation of inertial navigation system (INS) and global navigation satellite system (GNSS) suffers from the risk of performance degradation in the radio signal denied environment. In the traditional INS/CNS (celestial navigation system) integrated navigation system, the drift of the gyroscopes in the inertial measurement unit can be suppressed, while the zero bias of the accelerometers cannot be eliminated effectively. In order to cope with this problem, a novel autonomous navigation approach based on the line of sight (LOS) measurements of space targets is presented, where the LOS vectors of space targets and background stars with known ephemeris are observed by the star camera, and the state of the vehicle is predicted by using the IMU. The position, velocity and attitude of the vehicle are estimated together with the calibration of the IMU measurement bias via the extended Kalman filter (EKF). In addition, an optimal selection strategy of observed targets based on the Cramer Rao lower bound (CRLB) is designed. The effectiveness of the presented method is illustrated through the visibility analysis of the space targets, the observability analysis of the navigation and the numerical simulation of the navigation filter.

Key words: aerial vehicle, navigation, space target, optimal selection, Kalman filter

中图分类号: 

  • V448