中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 119-126.doi: 10.3969/j.issn.1674 1579.2023.04.013

• 论文与报告 • 上一篇    

双时间尺度下基于Transformer的锂电池剩余寿命预测

  

  1. 火箭军工程大学
  • 出版日期:2023-08-26 发布日期:2023-09-28
  • 基金资助:
    国家自然科学基金资助项目(62227814、61833016和62103433)、陕西省科协青年人才托举计划项目(20230127)和中国博士后科学基金面上项目(2023M7342286)

Remaining Useful Life Prediction of Lithium Batteries Based on Transformer Under the Dual Time Scales

  • Online:2023-08-26 Published:2023-09-28

摘要: 准确预测锂离子电池剩余使用寿命对于掌握其健康状况和管理备件资源具有重要作用.现有锂电池剩余寿命预测方法大多局限于以循环次数为主的预测结果,本质上属于面向单一时间尺度的方法,忽略了锂电池健康状态受循环次数与工作时长双重时间尺度下的退化综合影响的现实问题.提出一种双时间尺度下基于Transformer的锂电池RUL预测模型.该方法选取容量作为表征其性能退化的关键指标,通过Kalman滤波和滑动时间窗对电池容量数据进行处理获取训练集和测试集,有效提取双时间尺度中蕴含的寿命信息,并充分考虑不同时间尺度寿命信息间的相互关系,建立容量与双重时间尺度的映射关系,实现了锂电池在双时间尺度下的RUL准确预测.通过锂电池实例验证了所提方法的有效性和潜在应用价值.

关键词: 深度学习, 双时间尺度, Transformer网络, RUL预测

Abstract: Accurately predicting the remaining useful life (RUL) of lithium batteries plays an important role in understanding their health and managing spare parts resources. Most of the existing lithium battery remaining life prediction methods are limited to the prediction results based on the number of cycles. It is essentially a method oriented to a single time scale, ignoring the practical problem that the health state of lithium batteries is affected by the dual time scales of cycle times and working time. In view of this, this article proposes a lithium battery RUL prediction model based on Transformer under the dual time scales. This method selects the capacity as a key index to characterize its performance degradation. The battery capacity data is processed to obtain training sets and test sets through Kalman filtering and sliding time window. The life information contained in the dual time scales, and fully consider the interrelationship between the life information of different time scale, further, establish a mapping relationship between the capacity and the dual time scales, so as to realize the accurate prediction of the RUL of the lithium battery at the dual time scale. Finally, the effectiveness and potential application value of the proposed method are verified by lithium battery examples.

Key words: deep learning, dual time scale, transformer network, RUL prediction

中图分类号: 

  • TM911