中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 86-95.doi: 10.3969/j.issn.1674 1579.2023.04.010

• 论文与报告 • 上一篇    下一篇

基于多尺度时间卷积网络的航空发动机寿命预测

  

  1. 华中科技大学
  • 出版日期:2023-08-26 发布日期:2023-09-22
  • 基金资助:
    国家重点研发计划青年科学家项目(2022YFC2204700)

Aero Engine Life Prediction Based on Multi Scale Temporal Convolutional Networks

  • Online:2023-08-26 Published:2023-09-22

摘要: 剩余寿命预测对于航空发动机设备的安全运行、制定维修计划具有重要的意义.目前现有方法无法有效提取设备复杂工况和复杂故障下的退化特征.针对此问题,提出一种基于多尺度时间卷积网络(MTCN)的发动机寿命预测方法.该方法利用时间卷积网络提取数据时序信息,并通过多尺度卷积核的不同感受野提取设备复杂工况下的退化特征,从而更好地预测极端条件下的设备剩余使用寿命(RUL)值.为了验证所提出方法的有效性,在航空发动机CMAPSS数据集上进行试验.结果表明所提出方法能有效提高设备在复杂工况和复杂故障下的RUL预测精度.

关键词: 剩余寿命预测, 多尺度卷积, 时间卷积网络, 发动机

Abstract: The remaining useful life (RUL) of the aero engine is important for the safe operation of the engine equipment and the development of maintenance plans. At present, the existing methods are difficult to effectively extract the degradation features of equipment under complex operating conditions and complex faults. To solve this problem, an engine RUL prediction method based on multi scale temporal convolutional network (MTCN) is proposed. In this method, time convolutional networks are used to extract temporal information. Moreover, the degradation features of equipment under complex operating conditions are extracted by multi scale convolution kernel. As a result, it is better to predict the RUL of equipment under extreme conditions. To verify the validity of the proposed method, abundant experiments are carried out on the C MAPSS dataset. The results show that the proposed method can effectively improve the accuracy of RUL prediction under complex conditions.

Key words: remaining useful life, multi scale convolution, temporal convolutional network, engine

中图分类号: 

  • V431