空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (1): 65-73.doi: 10.3969/j.issn.1674 1579.2023.01.007
摘要: 针对无人机航拍图像尺度变化大、识别难度大和目标普遍较小的问题,提出一种基于改进单阶段多框检测器(single shot multibox detector,SSD)的无人机航拍目标检测算法——RCBnet.该算法为了提升网络的特征提取能力,将SSD算法的特征提取网络修改为Resnet 50并采用特征融合的方式,将特征图进行融合,用融合后的特征图构建特征金字塔;为了增强算法对物体的检测能力,设计一种联合注意力机制的多尺度卷积结构来有效调节感受野,实现不同尺寸卷积核对特征图的并行运算;针对训练过程中正负样本极具不平衡的问题,该算法采用Focal Loss损失函数训练网络模型,使其侧重于困难样本.通过与其他经典算法相比可知,所提算法在无人机航拍图像中具有更高的检测精度、更好的检测性能和鲁棒性,相比SSD,精度提高达3.46%.
中图分类号: