中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2022, Vol. 48 ›› Issue (4): 104-114.doi: 10.3969/j.issn.1674 1579.2022.04.013

• 短文 • 上一篇    

基于高斯混合模型的卫星电源系统异常检测方法

  

  1. 国防科技大学
  • 出版日期:2022-08-26 发布日期:2022-08-24
  • 基金资助:
    国家自然科学基金资助项目(61903366, 61903086, 62001115)、湖南省自然科学基金资助项目(2019JJ50745, 2020JJ4280, 2021JJ40133)、北京控制工程研究所基金资助项目(HTKJ2019KL502007)和民用航天预研基金资助项目(B0103)

Anomaly Detection for Satellite Power System Based on Gaussian Mixture Model






  • Online:2022-08-26 Published:2022-08-24

摘要: 作为具有多种工作模式的复杂系统,卫星电源系统在不同工作模式下的观测数据具备不同的统计特性.因为卫星电源系统的实际观测数据缺少状态标识作为先验信息,所以传统异常检测方法无法区分系统的不同工作模式,具有较大局限性.针对无状态标识的卫星电源系统异常检测问题,提出了一种基于高斯混合模型(GMM)的异常检测方法.高斯混合模型被用于状态标识缺失数据的特征挖掘,从而实现对不同工作模式的聚类与识别;可区分性、稳定性、以及拟合优良性三个指标被用于GMM的评价,使得聚类簇数的选取是合理的;在异常检测阶段,训练好的高斯混合模型被用于构建了模式识别准则,距离信息和F分布被用于构建了检测阈值,并通过增加待检测数据集窗口长度来提升检测效果;以卫星电源系统的太阳能帆板机构为对象,开展了数值仿真和实验验证.异常检测结果表明,该方法能有效实现多种工作模式下的异常检测,具有较高的准确率和召回率.

关键词: 卫星电源系统, 异常检测, 高斯混合模型, EM算法, 状态标识缺失, 数据驱动

Abstract: Satellite power system usually has a variety of working modes, and the observation data in different working modes have different statistical characteristics. Due to the fact that the actual observation data of satellite power system cannot provide the state identification priori information, the traditional anomaly detection methods cannot distinguish the different working modes of the satellite power system. Therefore, the traditional methods have great limitations. In order to solve the problem of anomaly detection without state identification, a data driven anomaly detection method is proposed for satellite power system based on Gaussian mixture model (GMM). As a data clustering method, GMM can mine the intrinsic characteristics of data in the lack of working state identification, and realize the clustering and recognition of multiple working modes. Then, indexes are given to evaluate the GMM method from three aspects: distinguishability, stability and information. These criteria can ensure that the cluster number is reasonable. Furthermore, in the anomaly detection stage, the trained GMM is used to construct the pattern recognition criteria. The distance information and F distribution are used to construct the detection threshold. And the detection effect is improved by increasing the window length of the testing data. Finally, numerical simulation and experimental verification are carried out for the solar array drive assembly (SADA) of satellite power system. The results of anomaly detection show that the proposed method can effectively realize anomaly detection in a variety of working modes, and has high precision and recall rate.

Key words: anomaly detection, satellite power system, gaussian mixture model, EM algorithm, lack of state identification, data driven 

中图分类号: 

  • V19