中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2021, Vol. 47 ›› Issue (6): 70-76.doi: 10.3969/j.issn.1674 1579.2021.06.009

• 论文与报告 • 上一篇    下一篇

一种基于渐进增长对抗生成网络的火星样本生成方法

  

  1.  中国科学院计算技术研究所
  • 出版日期:2021-12-25 发布日期:2022-01-20
  • 基金资助:
    国家重点研发计划资助项目(2018AAA0102700)

A Mars Sample Generation Method Based on Progressive Growing Generative Adversarial Networks

  • Online:2021-12-25 Published:2022-01-20
  • Supported by:
    the National Key R&D Program of China(2018AAA0102700)

摘要: 对抗生成网络的发展为图像生成等传统领域带来了很大进步,通过使用较少样本训练对抗生成网络,可以学习到特定图像类别的特征,进而能够增广样本应用于场景测试、其他网络训练等多种任务.本工作探索了在较少量的火星训练样本的基础上,针对直接使用GAN生成样本存在特征因平均化而不明显且类别较少的模式崩塌问题,基于渐进增长对抗生成网络,提出了一种聚类训练生成协同的火星样本生成方法.实验结果表明,与直接利用渐进增长对抗生成网络的基线方法相比,本工作生成效果得到了提升.

关键词: 对抗生成网络, 样本生成, 数据增强, 模式崩塌

Abstract: The development of GANs (generative adversarial networks) has brought great progress to many traditional fields including image generation. By training GANs with a small number of samples, the features of specific image categories can be learned, and then the generated samples can be applied to a variety of tasks such as scene testing and training other networks. This work explores the automatic generation of Mars image samples from limited training datasets. A cooperative clustering training generating method for Mars sample generation is proposed based on progressive growing GANs, which alleviates the problems that the features of samples are not obvious, and the types of features are insufficient when directly adopting GANs to sample generation. Our results show that the generated samples are improved compared with the baseline original progressive growing GANs.

Key words: generative adversarial networks, image generation, data enhancement, mode collapse

中图分类号: 

  • V412.4