空间控制技术与应用 ›› 2020, Vol. 46 ›› Issue (6): 10-19.doi: 10.3969/j.issn.1674-1579.2020.06.002
摘要: 目标检测与跟踪技术广泛应用于交通、医疗、安保和航天等领域.目前,目标检测与跟踪技术面临目标微弱、背景复杂、目标被遮挡等挑战.同时,随着脑科学研究的不断深入,人们对人脑视觉系统的理解逐渐透彻,利用类脑计算解决复杂背景下高精度目标检测与跟踪问题成为相关领域的重要研究方向.本文结合神经工程导向的类脑模型和计算机工程导向的深度神经网络(Deep Neural Networks, DNNs),提出多种基于类脑模型与深度神经网络的目标检测与跟踪算法,包括:基于演算侧抑制的目标检测算法,基于结构对比度(StructureContrast, SC)视觉注意模型的弱小目标检测算法和基于记忆机制与分层卷积特征的目标跟踪算法.实验结果表明,将类脑模型和深度神经网络应用于目标检测和跟踪领域,有利于实现复杂条件下的高精度目标检测和鲁棒性目标跟踪.
中图分类号: