[1]佘志坤,薛白,丛源良,等. 最优双冲量交会问题的数学建模与数值求解[J].宇航学报,2010,31(1):155161.
SHE Z K, XUE B, CONG Y L, et al. Mathematical modeling and numerical solving of the optimal twoimpulse rendezvous problem[J]. Journal of Astronautics, 2010,31(1):155161.
[2]张万里,王常虹,夏红伟,等.连续小推力航天器轨道交会问题的制导律设计[J]. 哈尔滨工业大学学报,2012,44(1):3642.
ZHANG W L, WANG C H, XIA H W, et al. Guidance law of spacecraft for continuous lowthrusts orbital rendezvous problem[J]. Journal of Harbin Institute of Technology, 2012,44(1):3642.
[3]陈伟跃,荆武兴,程博.小推力速度闭环交会制导律设计[J].宇航学报,2009,30(3):10301038.
CHEN W Y, JING W X, CHENG B. Fast closedloop guidance law with finite thrust amplitude jets for rendezvous[J]. Journal of Astronautics, 2009,30(3):10301038.
[4]张万里.轨道转移飞行器的轨迹优化和制导算法研究[D].哈尔滨:哈尔滨工业大学, 2011.
ZHANG W L. Research on trajectory optimization and guidance algorithm of orbital transfer vehicle[D]. Harbin: Journal of Harbin Institute of Technology, 2011.
[5]陈新民,余梦伦.迭代制导在运载火箭上的应用研究[J].宇航学报, 2003,24(5):484501.
CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics, 2003,24(5):484501.
[6]TOURNES C, SHTESSEL Y B, WELLS E. Upper stage rocket guidance and control using discontinuous reaction control thrusters via sliding modes[C]//American Control Conference. New York:IEEE, 1997: 25472551. |