中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 77-85.doi: 10.3969/j.issn.1674 1579.2023.06.008

• 论文与报告 • 上一篇    下一篇

基于深度学习网络的遥感图像异常检测方法研究

  

  1. 北京航空航天大学
  • 出版日期:2023-12-25 发布日期:2024-01-02
  • 基金资助:
    国家自然科学基金资助项目(61972016和62032016)和北京市科技新星资助项目(20220484106和202304844451)

An Anomaly Detection Method for Remote Sensing Image Based on Deep Learning Network

  • Online:2023-12-25 Published:2024-01-02

摘要: 针对现实世界中异常图像数据稀少的数据不均衡问题,构建了一个高性能的异常检测模型. 仅使用正常训练数据和小部分仿真异常数据,构建了两阶段框架的异常检测模型.通过对正常数据和模拟生成的异常数据进行分类训练,得到提取特征的ResNet18编码器模型,通过高斯密度估计对正常数据的特征建模,构建异常图像的单分类器. GradCAM扩展了模型,使得异常检测模型可以在没有标签的情况下定位异常区域.通过仿真异常检测数据集上进行的实验证明,提出的算法能够检测现实世界遥感图像中人类肉眼难以发现的异常样本,并给出定位结果.

关键词: 异常检测, 遥感图像, 深度学习, 卷积神经网络

Abstract: A high performance anomaly detection model has been constructed to address the problem of sparse anomalous image data in the real world. A two stage framework anomaly detection model is built using only normal training data and a small amount of synthetic anomaly sample. First, a ResNet 18 encoder model is trained to extract representation by the pretext of classifying normal data and synthetic anomaly data. Then, a single classifier for anomaly images is built through modelling the distribution of normal data representations using Gaussian density estimation. GradCAM is applied to extend the model, enabling the anomaly detection model to locate anomaly regions without labels. Finally, experiments are conducted on a simulated anomaly detection dataset using real world images, demonstrating that the proposed algorithm can detect anomaly and provide location results in remote sensing images that are even difficult to recognize with human eyes.

Key words: anomaly detection, remote sensing, deep learning, convolutional neural network

中图分类号: 

  • TP39