空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 28-37.doi: 10.3969/j.issn.1674 1579.2023.06.003
摘要: 针对当前使用图像特征的空间非合作目标立方星位姿估计算法存在鲁棒性差的问题,提出一种利用立方星顶点进行位姿估计的设计方案.基于双目视觉获取的灰度图像,采用HED(holistically nested edge detection)网络结合二值化形态学处理方法以提高边缘提取的鲁棒性.检测出边缘图像中的多边形特征后,滤除重复和干扰的多边形,设计共边双框关键顶点判别算法判别立方星的关键顶点,实现了对立方星结构参数和位姿的估计.采用立方星模型进行实验验证,整体方法相比ICP(iterative closest point)精配准方法在30~70 cm探测距离内实现了最大4.4°、1.2 cm的偏差;边缘提取方法对目标结构参数判别准确率提升10%~40%,为非合作目标立方星的结构参数和位姿估计提供新技术路线.
中图分类号: