中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (4): 76-85.doi: 10.3969/j.issn.1674 1579.2023.04.009

• 论文与报告 • 上一篇    下一篇

基于迁移学习的航天器遥测数据异常检测技术

  

  1. 重庆大学
  • 出版日期:2023-08-26 发布日期:2023-09-22
  • 基金资助:
    国家重点研发计划项目(2021YFB1715000)和重庆大学中央高校基本科研业务费资助项目(X20220104)

Spacecraft Data Anomaly Detection Technology Based on Transfer Learning

  • Online:2023-08-26 Published:2023-09-22

摘要: 航天器遥测数据异常检测是识别航天器状态、保障航天器安全可靠运行的关键技术.然而,航天器遥测数据异常检测通常面临时序数据维度大、异常不平衡、标签样本缺乏等问题.基于数据预测的异常检测思想,提出一种基于迁移学习的深度异常检测模型.根据遥测数据时序相关性强的特点,采用具有注意力机制的长短期记忆网络建立遥测数据预测模型.为了克服航天器遥测数据异常标签少、数据维度高的问题,采用微调的迁移学习方法对预测模型进行优化,同时采用全连接层统一不同数据集维度,从而提高了迁移学习模型精度,提升异常检测水平.以美国宇航局公开的两个航天器数据集为实验对象,利用提出的异常检测方法对该数据集异常状态进行识别,结果表明,与经典异常检测算法相比,引入迁移学习能明显提升模型性能,实验结果优于目前常见的异常检测模型,证明了方法的有效性.

关键词: 异常检测, 迁移学习, 长短期记忆, 航天器遥测数据

Abstract: Anomaly detection of spacecraft telemetry data is a key technology to identify the status of spacecraft and ensure the safe and reliable operation of spacecraft. However, anomaly detection of spacecraft telemetry data usually faces problems such as large dimensionality of time series data, unbalanced anomalies, and lack of labeled samples. In response to these problems, a deep anomaly detection model is proposed based on the idea of anomaly detection. Specifically, according to the strong temporal correlation of telemetry data, a long short term memory network with an attention mechanism is used to establish a telemetry data prediction model. At the same time, in order to overcome the problem of few abnormal labels and high data dimensions of spacecraft telemetry data, a fine tuning transfer learning method is used to optimize the prediction model, and a fully connected layer is used to unify the dimensions of different data sets, by which the accuracy of the transfer learning model and the capacity for anomaly detection are improved. Two spacecraft data sets released by NASA are taken as the experimental object, and the proposed anomaly detection method is used to identify the abnormal state of the data set. The results show that compared with the classic anomaly detection algorithm, the introduction of transfer learning can significantly improve the performance of the model. The experimental results are better than the current common anomaly detection models, which proves the effectiveness of the method.

Key words: anomaly detection, transfer learning, long short term memory, spacecraft telemetry data

中图分类号: 

  • TP273