中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (1): 65-73.doi: 10.3969/j.issn.1674 1579.2023.01.007

• 论文与报告 • 上一篇    下一篇

基于改进SSD的无人机航拍目标检测

  

  1. 燕山大学
  • 出版日期:2023-02-26 发布日期:2023-03-21
  • 基金资助:
    国家自然科学基金资助项目(61973264)

UAV Aerial Object Detection Based on Improved SSD

  • Online:2023-02-26 Published:2023-03-21

摘要: 针对无人机航拍图像尺度变化大、识别难度大和目标普遍较小的问题,提出一种基于改进单阶段多框检测器(single shot multibox detector,SSD)的无人机航拍目标检测算法——RCBnet.该算法为了提升网络的特征提取能力,将SSD算法的特征提取网络修改为Resnet 50并采用特征融合的方式,将特征图进行融合,用融合后的特征图构建特征金字塔;为了增强算法对物体的检测能力,设计一种联合注意力机制的多尺度卷积结构来有效调节感受野,实现不同尺寸卷积核对特征图的并行运算;针对训练过程中正负样本极具不平衡的问题,该算法采用Focal Loss损失函数训练网络模型,使其侧重于困难样本.通过与其他经典算法相比可知,所提算法在无人机航拍图像中具有更高的检测精度、更好的检测性能和鲁棒性,相比SSD,精度提高达3.46%.

关键词: 无人机, 深度学习, 目标检测, 特征融合, 感受野

Abstract: Aiming at the problems of large changes in the scale of aerial images of unmanned aerial vehicles (UAV), great recognition difficulties, and generally small targets, the paper proposes an object detection algorithm for UAV aerial photography based on improved SSD RCBnet. In order to improve the feature extraction capability of the network, the algorithm modifies the feature extraction network of the SSD algorithm to Resnet 50 and adopts the feature fusion method to fuse the feature maps, and uses the fused feature maps to build a feature pyramid. In addition, in order to enhance the algorithm's ability of objects detecting, a multi scale convolution structure of attention mechanism is designed to effectively adjust the receptive field and realize the parallel operation of the feature map of the convolution kernel of different sizes. Aiming at the problem of extremely imbalanced positive and negative samples in training, the algorithm uses the Focal Loss function to train the network model so as to focus on difficult samples. Compared with other classic algorithms, the algorithm proposed in the paper has higher detection accuracy, better detection performance and robustness in UAV aerial images. Compared with SSD, the accuracy is improved by 3.46%.

Key words: unmanned aerial vehicles, deep learning, object detection, feature fusion, receptive fields

中图分类号: 

  • V249