空间控制技术与应用 ›› 2019, Vol. 45 ›› Issue (1): 9-14.doi: 10.3969/j.issn.1674-1579.2019.01.002
熊凯1,2,魏春岭1,2,辛优美1,2
XIONG Kai1,2,WEI Chunling1,2,XIN Youmei1,2
摘要: 摘要: 扩展卡尔曼滤波(EKF)的估计精度受限于测量噪声统计特性的准确程度,如果敏感器测量噪声方差偏离其标称值,将会对滤波性能产生不利影响.尽管自适应扩展卡尔曼滤波(AEKF)能够对测量噪声方差进行估计,但是,噪声特性准确的情况下,AEKF的性能往往不及传统EKF.针对上述问题,本文提出一种并行模型自适应滤波(PMAF),基于特定的自适应率将EKF和AEKF结合起来,使得在先验信息准确的情况下,EKF在状态估计中起主导作用;相反,在实际噪声方差偏离标称值时,令AEKF起主导作用.这样,即能有效削弱测量噪声统计特性不确定性对滤波性能的影响,又能确保正常情况下的估计精度.以空间目标相对位姿估计为例,通过数学仿真对EKF、AEKF和PMAF进行了对比研究,表明所提算法的综合性能优于传统方法.
中图分类号: