中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2015, Vol. 41 ›› Issue (4): 7-13.doi: 10.3969/j.issn.1674-1579.2015.04.002

• 学术研究 • 上一篇    下一篇

自适应混合信息滤波算法及其在 相对导航中的应用

  

  • 出版日期:2015-08-20 发布日期:2015-08-21
  • 基金资助:

    国家自然科学基金资助项目(61304027).

Adaptive Hybrid Information Filtering and Its Application in Relative Navigation

  • Online:2015-08-20 Published:2015-08-21

摘要: 为解决相对导航模型中线性、非线性并存,及多传感器信息融合时基于Kalman滤波的导航算法计算复杂度较大的问题,提出一种混合信息滤波算法;考虑测量噪声统计特性不准确等工程因素,提出一种自适应混合信息滤波相对导航算法.理论分析及仿真验证表明,与基于Kalman滤波的传统导航算法相比,给出的混合信息滤波算法具有多传感器数据融合时计算复杂度低、便于工程实现的优点,且可以完成线性、非线性并存时的导航滤波任务;除上述特点外,在传感器测量噪声统计特性不准确的情况下,给出的自适应混合信息滤波相对导航算法可以通过自适应调整量测协方差阵的方式,使导航系统仍保持较高的精度.

关键词: 多传感器信息融合, 信息滤波, 相对导航, 自适应导航

Abstract: In relative navigation model, there are linear model and nonlinear model. And the navigation algorithm based on Kalman filtering has high computational complexity in multisensor information fusion. Aiming at these problems, the hybrid information filtering is proposed. To overcome the influence of inaccuracy of noise statistic characteristic, the relative navigation based on adaptive hybrid information filtering is also proposed. Theoretical analysis and numerical simulation show that the hybrid information filtering has lower computational complexity in multisensor information fusion than the navigation algorithm based on Kalman filtering. And the navigation task with linear and nonlinear hybrid models also can be completed with the hybrid information filtering. Besides the above characteristics, via adaptive adjusting the measurement covariance matrix, the effect of inaccurate noise statistic characteristic can be reduced.

Key words: multisensor information fusion, information filtering, relative navigation, adaptive navigation

中图分类号: 

  • V488.22+4