参考文献
[1]李川,陈朝晖. 基于多面体模型的数据依赖分析方法[J]. 空间控制技术与应用, 2015, 41(5): 43-47.
LI C, CHEN Z H. Datadependence analysis method based on polyhedral model[J]. Aerospace Control and Application, 2015, 41(5): 43-47.
[2]POP S, COHEN A, BASTOUL C, et al. GRAPHITE: Polyhedral analyses and optimizations for GCC[C]//Proceedings of the 2006 GCC Developers Summit. Ottawa; GCC, 2006: 179-197
[3]BENABDERRAHMANE M W, P L N, COHEN A, et al. The polyhedral model is more widely applicable than you think[J]. Lecture Notes in Computer Science, 2010: 283-303.
[4]GRLINGER A. The challenges of nonlinear parameters and variables in automatic loop parallelisation[D]. University of Passau, Department of Informatics and Mathematics, 2009.
[5]GRLINGER A. Extending the polyhedron model to inequality systems with nonlinear parameters using quantifier elimination[D]. University of Passau, Department of Informatics and Mathematics, 2003.
[6]BAGHDADI R, COHEN A, BASTOUL C, et al. The potential of synergistic static, dynamic and speculative loop nest optimizations for automatic parallelization[C]// Workshop on Parallel Execution of Sequential Programs on Multicore Architectures (PESPMA′10), 2010.
[7]JIMBOREAN A, L M, et al. VMAD: an advanced dynamic program analysis & instrumentation framework[C]//CC21st International Conference on Compiler Construction. 2012: 220-237.
[8]ALEXANDRA J, F D J, JUAN M M C. Dynamic and speculative polyhedral parallelization using compilergenerated skeletons[J]. Springer Science, 2013, 42(4): 529-545.
[9]ANAND V, M S, MARY H. Nonaffine extensions to polyhedral code generation[C]//ACM CGO: Orlando, FL, 2014. |